
Spontaneous leptogenesis via Majoron oscillation 

Kunio Kaneta (CTPU, IBS)

Journal club @ CTPU/IBS, Oct. 2, 2015

Reference: Phys.Rev. D92 (2015) 3, 035019 
                   in collaboration with Masahiro Ibe (ICRR & IPMU)



Outline

1. Introduction

2. Spontaneous leptogenesis via Majoron oscillation

3. Phenomenological implication

4. Viable models

5. Summary



1. Introduction



1. Introduction

[Strumia ’06]
23. Big-Bang nucleosynthesis 3

Figure 23.1: The abundances of 4He, D, 3He, and 7Li as predicted by the standard
model of Big-Bang nucleosynthesis — the bands show the 95% CL range. Boxes
indicate the observed light element abundances. The narrow vertical band indicates
the CMB measure of the cosmic baryon density, while the wider band indicates the
BBN concordance range (both at 95% CL).
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Baryon Asymmetry of the Universe (BAU)

➢ Two independent observations have achieved 
the consistent number:

⌘CMB ' (6.0 � 6.1) ⇥ 10�10

⌘BBN ' (5.7 � 6.7) ⇥ 10�10

[PDG ’14]
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Figure 1: (a) Main reactions that determine primordial nuclear abundances. (b) How CMB
anisotropies depend on the baryon abundancy ΩB = ρB/ρcr, compared with data.

constant,...), and the constant k gets the physical meaning of curvature of the universe. The inflation
mechanism generates a smooth universe with negligibly small k.

Second, we need to know that a gas of particles in thermal equilibrium at temperature T ≫ m has
number density neq ∼ T 3 and energy density ρeq ∼ T 4: one particle with energy ∼ T per de-Broglie
wavelength ∼ 1/T . The number density of non relativistic particles (T ≪ m) is suppressed by a
Boltzmann factor, neq ∼ (mT )3/2e−m/T , and their energy density is ρeq ≃ mneq.

We can now understand eq. (2), by studying what happens to a DM particle of mass m when the
temperature T cools below m.

Annihilations with cross section σ(DM DM → SM particles)
try to maintain thermal equilibrium, nDM ∝ exp(−m/T ).
But they fail at T <∼m, when nDM is so small that the collision
rate Γ experienced by a DM particle becomes smaller than the
expansion rate H:

Γ ∼ nDMσ <∼ H ∼ T 2/MPl.

As illustrated in the picture, annihilations become ineffective,
leaving the following out-of-equilibrium relic abundancy of
DM particles:
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Inserting the observed DM density, ρDM ∼ ργ at T ∼ Tnow, and a typical cross section σ ∼ g4/m2

gives eq. (2) for a DM particle with weak coupling g ∼ 1. A precise computation can be done solving
Boltzmann equations for DM.

1.2 The baryon asymmetry

Let us summarize how the value of the baryon asymmetry in eq. (1) is measured. The photon density
directly follows from the measurement of the CMB temperature and from Bose-Einstein statistics:
nγ ∼ T 3. Counting baryons is more difficult. Direct measurements are not accurate, because only
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Figure 23.1: The abundances of 4He, D, 3He, and 7Li as predicted by the standard
model of Big-Bang nucleosynthesis — the bands show the 95% CL range. Boxes
indicate the observed light element abundances. The narrow vertical band indicates
the CMB measure of the cosmic baryon density, while the wider band indicates the
BBN concordance range (both at 95% CL).
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Figure 1: (a) Main reactions that determine primordial nuclear abundances. (b) How CMB
anisotropies depend on the baryon abundancy ΩB = ρB/ρcr, compared with data.

constant,...), and the constant k gets the physical meaning of curvature of the universe. The inflation
mechanism generates a smooth universe with negligibly small k.

Second, we need to know that a gas of particles in thermal equilibrium at temperature T ≫ m has
number density neq ∼ T 3 and energy density ρeq ∼ T 4: one particle with energy ∼ T per de-Broglie
wavelength ∼ 1/T . The number density of non relativistic particles (T ≪ m) is suppressed by a
Boltzmann factor, neq ∼ (mT )3/2e−m/T , and their energy density is ρeq ≃ mneq.

We can now understand eq. (2), by studying what happens to a DM particle of mass m when the
temperature T cools below m.

Annihilations with cross section σ(DM DM → SM particles)
try to maintain thermal equilibrium, nDM ∝ exp(−m/T ).
But they fail at T <∼m, when nDM is so small that the collision
rate Γ experienced by a DM particle becomes smaller than the
expansion rate H:

Γ ∼ nDMσ <∼ H ∼ T 2/MPl.

As illustrated in the picture, annihilations become ineffective,
leaving the following out-of-equilibrium relic abundancy of
DM particles:
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Inserting the observed DM density, ρDM ∼ ργ at T ∼ Tnow, and a typical cross section σ ∼ g4/m2

gives eq. (2) for a DM particle with weak coupling g ∼ 1. A precise computation can be done solving
Boltzmann equations for DM.

1.2 The baryon asymmetry

Let us summarize how the value of the baryon asymmetry in eq. (1) is measured. The photon density
directly follows from the measurement of the CMB temperature and from Bose-Einstein statistics:
nγ ∼ T 3. Counting baryons is more difficult. Direct measurements are not accurate, because only

3

➢ BAU is not likely to be an initial condition of the universe
(due to the inflation)
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Figure 1: (a) Main reactions that determine primordial nuclear abundances. (b) How CMB
anisotropies depend on the baryon abundancy ΩB = ρB/ρcr, compared with data.
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Figure 1: (a) Main reactions that determine primordial nuclear abundances. (b) How CMB
anisotropies depend on the baryon abundancy ΩB = ρB/ρcr, compared with data.

constant,...), and the constant k gets the physical meaning of curvature of the universe. The inflation
mechanism generates a smooth universe with negligibly small k.

Second, we need to know that a gas of particles in thermal equilibrium at temperature T ≫ m has
number density neq ∼ T 3 and energy density ρeq ∼ T 4: one particle with energy ∼ T per de-Broglie
wavelength ∼ 1/T . The number density of non relativistic particles (T ≪ m) is suppressed by a
Boltzmann factor, neq ∼ (mT )3/2e−m/T , and their energy density is ρeq ≃ mneq.

We can now understand eq. (2), by studying what happens to a DM particle of mass m when the
temperature T cools below m.

Annihilations with cross section σ(DM DM → SM particles)
try to maintain thermal equilibrium, nDM ∝ exp(−m/T ).
But they fail at T <∼m, when nDM is so small that the collision
rate Γ experienced by a DM particle becomes smaller than the
expansion rate H:

Γ ∼ nDMσ <∼ H ∼ T 2/MPl.

As illustrated in the picture, annihilations become ineffective,
leaving the following out-of-equilibrium relic abundancy of
DM particles:
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Inserting the observed DM density, ρDM ∼ ργ at T ∼ Tnow, and a typical cross section σ ∼ g4/m2

gives eq. (2) for a DM particle with weak coupling g ∼ 1. A precise computation can be done solving
Boltzmann equations for DM.

1.2 The baryon asymmetry

Let us summarize how the value of the baryon asymmetry in eq. (1) is measured. The photon density
directly follows from the measurement of the CMB temperature and from Bose-Einstein statistics:
nγ ∼ T 3. Counting baryons is more difficult. Direct measurements are not accurate, because only
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➢ These conditions are satisfied in the SM, but sufficient 
BAU can not be achieved…
(small CP & observed Higgs mass)
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Figure 1: (a) Main reactions that determine primordial nuclear abundances. (b) How CMB
anisotropies depend on the baryon abundancy ΩB = ρB/ρcr, compared with data.

constant,...), and the constant k gets the physical meaning of curvature of the universe. The inflation
mechanism generates a smooth universe with negligibly small k.

Second, we need to know that a gas of particles in thermal equilibrium at temperature T ≫ m has
number density neq ∼ T 3 and energy density ρeq ∼ T 4: one particle with energy ∼ T per de-Broglie
wavelength ∼ 1/T . The number density of non relativistic particles (T ≪ m) is suppressed by a
Boltzmann factor, neq ∼ (mT )3/2e−m/T , and their energy density is ρeq ≃ mneq.

We can now understand eq. (2), by studying what happens to a DM particle of mass m when the
temperature T cools below m.

Annihilations with cross section σ(DM DM → SM particles)
try to maintain thermal equilibrium, nDM ∝ exp(−m/T ).
But they fail at T <∼m, when nDM is so small that the collision
rate Γ experienced by a DM particle becomes smaller than the
expansion rate H:

Γ ∼ nDMσ <∼ H ∼ T 2/MPl.

As illustrated in the picture, annihilations become ineffective,
leaving the following out-of-equilibrium relic abundancy of
DM particles:
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Inserting the observed DM density, ρDM ∼ ργ at T ∼ Tnow, and a typical cross section σ ∼ g4/m2

gives eq. (2) for a DM particle with weak coupling g ∼ 1. A precise computation can be done solving
Boltzmann equations for DM.

1.2 The baryon asymmetry

Let us summarize how the value of the baryon asymmetry in eq. (1) is measured. The photon density
directly follows from the measurement of the CMB temperature and from Bose-Einstein statistics:
nγ ∼ T 3. Counting baryons is more difficult. Direct measurements are not accurate, because only
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➢ Appropriate BAU should be achieved before BBN
(for successful nucleosynthesis)

➢ Sakharov’s criteria is well known: 
sufficient condition for generating BAU dynamically

1. B (B—L) violation
2. C and CP violation
3. departure from thermal equilibrium

[PDG ’14]

➢ These conditions are satisfied in the SM, but sufficient 
BAU can not be achieved…
(small CP & observed Higgs mass) Physics beyond the SM (BSM) is clearly needed 

[Sakharov ’67]
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Figure 1: (a) Main reactions that determine primordial nuclear abundances. (b) How CMB
anisotropies depend on the baryon abundancy ΩB = ρB/ρcr, compared with data.

constant,...), and the constant k gets the physical meaning of curvature of the universe. The inflation
mechanism generates a smooth universe with negligibly small k.

Second, we need to know that a gas of particles in thermal equilibrium at temperature T ≫ m has
number density neq ∼ T 3 and energy density ρeq ∼ T 4: one particle with energy ∼ T per de-Broglie
wavelength ∼ 1/T . The number density of non relativistic particles (T ≪ m) is suppressed by a
Boltzmann factor, neq ∼ (mT )3/2e−m/T , and their energy density is ρeq ≃ mneq.

We can now understand eq. (2), by studying what happens to a DM particle of mass m when the
temperature T cools below m.

Annihilations with cross section σ(DM DM → SM particles)
try to maintain thermal equilibrium, nDM ∝ exp(−m/T ).
But they fail at T <∼m, when nDM is so small that the collision
rate Γ experienced by a DM particle becomes smaller than the
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Γ ∼ nDMσ <∼ H ∼ T 2/MPl.
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Inserting the observed DM density, ρDM ∼ ργ at T ∼ Tnow, and a typical cross section σ ∼ g4/m2

gives eq. (2) for a DM particle with weak coupling g ∼ 1. A precise computation can be done solving
Boltzmann equations for DM.
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Let us summarize how the value of the baryon asymmetry in eq. (1) is measured. The photon density
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Neutrino masses

➢ The tiny neutrino masses may also indicate BSM

➢ Seesaw mechanism is one of compelling descriptions:

L = LSM + N̄Ri/@NR � (y⌫ L̄HNR + h.c.) � 1
2

(MRN̄C
R NR + h.c.)

m⌫ ' (y⌫vew )2

MR

m⌫ ⇠ (100 GeV)2

1014 GeV
⇠ 0.1 eVex)

➢ Right-handed neutrino mass (MR) violates B—L, which may lead to BAU, 
but what is the origin?

➢ Neutrinos are massless in the SM

[Minkowski ’77; Yanagida ’79; Gell-Mann, et al. ’79; etc.]

L⌫
mass = �1

2


⌫L
NR

�T 
0 mT

D
mD MR

� 
⌫L
NR

�
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neutrino mass:



1. Introduction

Spontaneous B—L breaking

➢ Let us simply consider the model that a scalar condensate violates B—L symmetry

L = LSM + N̄Ri/@NR � (y⌫ L̄HNR + h.c.) � gN

2
(�N̄C

R NR + h.c.) � V (H,�)

MR = gNvB�L vB�L ⌘ h�i(                      )

χ:  Majoron

� = (vB�L + ⇢/
p

2)ei�/(
p

2vB�L)

➢ Then, NR acquires its mass through VEV of the singlet scalar σ :

➢ Spontaneous U(1)B—L breaking leads to a Nambu-Goldstone 
boson called “Majoron”

[Chikashige, Mohapatra, Peccei, ’80]so-called “singlet Majoron model”
Majoron is responsible for BAU via leptogenesis!

V

Re[σ]
vB—L

Re[σ]

Im[σ]

V (H,�) = �H (|H|2 � v2
ew )2 + ��(|�|2 � v2

B�L)2 + ��H (|�|2 � v2
B�L)(|H|2 � v2

ew )
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➢ B—L would be a good symmetry in the very early universe
L = LSM + N̄Ri/@NR � (y⌫ L̄HNR + h.c.) � gN
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R NR + h.c.) � V (H,�)

➢ B—L is broken before/during inflation so that NR 
acquires its mass, while Majoron χ arises

(vB—L ~ MR)

➢ We simply assume that MR > TR, so it is enough to use the 
effective theory obtained by integrating out NR:

Leff = LSM +
1
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MR
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ew
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➢ Global B—L symmetry might be explicitly broken by 
gravitational effect:
VPL(�) =

�5

MPL
+

�6

M2
PL

+
�7

M3
PL

+ · · ·

[Giddings, Strominger, ’88; Akhmedov et al., ‘92]

(n = 5, 6, 7, …)

Majoron acquires a mass
m(n)

� ⇠ MPL ⇥ [MR/MPL](n�2)/2
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+
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+
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Dynamical level splitting by background Majoron

➢ Leptons in the thermal bath feel the background Majoron oscillation

➢ Suppose the coherent Majoron oscillation is homogeneous, lepton kinetic 
term is modified as

level splitting
(effective chemical potential)E = ±

q
|~p|2 + m2 + µ�

➢ Then, we have the modified dispersion relation:

                                does not vanish even 
when the particles are in thermal equilibrium.
nL ⌘ nl � nl̄ / µ�

(c.f. spontaneous Baryogenesis                                   )[Cohen and Kaplan, ’87]
��×��-� ��×��-� ��×��-� ��-�

-���

���

���

���

� = �χ /�

�
��
��
��

��
��
��
��
�

χ (� )/χ�

χ
·
(� )/�χ

�≃�χ

µ�(t)

generating non-zero lepton asymmetry

Leff = LSM +
1
2
�@2�� @µ�

MR
L̄�µL +

m⌫

v2
ew

(LH)(LH) + · · ·

➢ This derivative coupling affects the kinetic term

Lkin � L̄(i/@ � m � (@µ�/MR)�µ)L

Lkin � L̄(i/@ � m � µ��
0)L @µ�/MR = (�̇, ~@�)µ/MR ⌘ (µ�,~0)µ
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Boltzmann equation (by taking the background Majoron into account)
@tni + 3Hni = C[ni ]

➢ Without μχ-term, collision terms are given by

C[n1] =
Z

d⇧1d⇧2d⇧3d⇧4�
4(p1 + p2 � p3 � p4)

⇥ [�|M12!34|2f1f2(1 ± f3)(1 ± f4) + |M34!12|2f3f4(1 ± f1)(1 ± f2)]

➢ By remembering the non-zero μχ-term raises the energy shifts, the collision 
terms are modified, for example,

C[n1] =
Z

d⇧1d⇧2d⇧3d⇧4�(E1 + E2 � E3 � E4 + 2µ�)�(~p1 + ~p2 � ~p3 � ~p4)

⇥ [�|M12!34|2f1f2(1 ± f3)(1 ± f4) + |M34!12|2f3f4(1 ± f1)(1 ± f2)]

➢ In our case, since the SM particles are in the thermal bath (chemical 
equilibrium), we can use the distribution functions for thermal equilibrium

fi ! f eq
i

➢ Hereafter we use the approximation that all of the particles have Maxwell-
Boltzmann distribution

f eq
i = e�(Ei±µi )/T
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Boltzmann equation (by taking the background Majoron into account)
@tni + 3Hni = C[ni ]

➢ Then, we have a set of Boltzmann eqs. for the following chemical potentials:

3.2 Boltzmann equations

Before deriving the Boltzmann equations, let us discuss the relations among the

chemical potentials so that the Boltzmann equations are reduced. First, let us list

the chemical potentials of the SM particles:

gauge bosons : µγ, µW± , µZ , µg,

matter fermions : µeLi , µēLi , µνLi , µν̄Li ,

µeRi , µēRi ,

µuLi , µūLi , µdLi , µd̄Li
,

µuRi , µūRi , µdRi , µd̄Ri
,

Higgs boson : µh0 , µh± ,

where the index i denotes the flavors.#7 In the highly heated thermal bath, the

gauge bosons have vanishing chemical potentials, and hence, the chemical potentials

of the particles and the anit-particles take opposite values with each other. Further,

we hereafter neglect the flavor mixing for simplicity, so that the chemical potentials

do not depend on flavors:

µeLi ≡ µeL , µeRi ≡ µeR , µνLi ≡ µνL ,

µuLi ≡ µuL , µdLi ≡ µdL , µuRi ≡ µuR , µdRi ≡ µdR . (19)

The vanishing chemical potential µW± = 0 leads to further reductions, µuL − µdL =

µνL − µeL = µh+ − µh0 = 0. For later purpose, we introduce µL, µQ, and µH which

denote

µeL = µνL ≡ µL, µuL = µdL ≡ µQ, µh0 = µh+ ≡ µH . (20)

Neutrality of the universe also puts a constraint on the chemical potentials. In

general, the total charge of the universe, which is denoted as Qtot
A for a quantum

number A, is obtained by Qtot
A =

∑
i ∆niQAi where QAi is a charge of a particle i,

and ∆ni is defined by ∆ni ≡ nparticle
i − nanti-particle

i = 2giT 3/π2(µi/T ) with µi and

gi being the chemical potential of particle i and its degrees of freedom, respectively.

Here we have again approximated the distributions by the Maxwell-Boltzmann dis-

#7Here, again we are neglecting electroweak symmetry breaking, and hence, µγ,Z,W± should be

understood as the ones of the SU(2)× U(1)Y gauge bosons, strictly speaking.

7

➢ To simplify the equations, we put the assumptions that

• neglect flavor mixings [μψi = μψ, (ψ = eL, νL, eR, uL, dL, uR, dR)]
• EW symmetric phase [μW±  = μZ = 0, μuL=μdL≡μQ, μνL=μeL≡μL, μh+=μh0≡μH]
• Yukawa interactions are in the thermal bath [μH=μL-μeR=μuR-μQ=μQ-μdR]
• sphaleron process is in the thermal bath [3μQ+μL=0]
• neutrality condition of the universe [2Ng(μQ-μL)+(4Ng+Nh)μH=0]

5

+ 14×3

+ 3
= 50  →  25 (parameters)

(μγ,g=0)

7×2
+ 5
+ 3 
+ 1
+ 1 = 24 

➢ All of the chemical potentials can be written in terms of only one chem. pot.

→ We take “μL” so that nB = �
4(4Ng + Nh)
28Ng + 9Nh

nL = �52
93

nL nL ⌘ nl � nl̄ / µL/T
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Boltzmann equation (by taking the background Majoron into account)
@tni + 3Hni = C[ni ]

➢ It is reasonable to solve the Boltzmann equation for nL ⌘ nl � nl̄ / µL/T

w / h�0vi

determined by m⌫

v2
ew

(LH)(LH)

α ~ 0.5 : numerical factor
d

dT
µL

T
= w

⇣µL

T
� ↵

µ�

T

⌘

h�0vi ⇠
P

i m2
⌫i

32⇡2v4
ew

@tnL + 3HnL = C[nL]

: wash-out factor

(LH $ LH†, LL $ H†H†)
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� = �χ /�
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��
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χ (� )/χ�
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·
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�≃�χ
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Parameter scan

(m̃⌫ ⌘
q

m2
⌫1

+ m2
⌫2

+ m2
⌫3

)

strong wash-outdiluted by expansion

⌘B ⇠ 10�10
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Parameter scan

➢ constraint on neutrino masses for successful leptogenesis

strong wash-outdiluted by expansion

m̃⌫ . 5.5 ⇥ 10�2 eV (�0 = MR) m̃⌫ . 9.1 ⇥ 10�2 eV (�0 = ⇡MR)
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- neutrinoless double beta decay -
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Viable models consistent with cosmological observations

➢ Majoron decay

O(n)
D =

�n�2|H|2
Mn�4

Pl
(n = 5, 6, 7, …)

Since the Majoron is very heavy, Planck scale suppressed 
operators are important.

O(n)
M =

�n

Mn�4
Pl

c.f.) mass operators

➢ Suppose that U(1)B—L is a gauge symmetry
➢ Let us consider the case that U(1)B—L is broken by a 

scalar field condensate h�i = v�

ÕM =
�

M⇤

�q�/2

Mq�/2�4
Pl

ÕD =
�

M⇤

�q�/2|H|2
Mq�/2�2

Pl

qΦ: U(1)B—L charge of Φ (qΦ  ≧ 10)

➢ We will demonstrate the case of qΦ = 10
➢ After Φ acquires VEV, Z10 discrete symmetry remains

O(q�/2)
M =

v�
M⇤

�q�/2

Mq�/2�4
Pl

O(q�/2+2)
D =

v�
M⇤

�q�/2|H|2
Mq�/2�2
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inf. end
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Z10 model ➢ Decay operator:
➢ Decay temperature:

➢ When Tdecay < O(1) MeV, the Majoron decay 
spoils BBN.
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D ⇠ (M4

R/M3
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Tdecay ⇠
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MPl�D
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Z10 model ➢ Decay operator:
➢ Decay temperature:

➢ When Tdecay < O(1) MeV, the Majoron decay 
spoils BBN.

O(7)
D ⇠ (M4

R/M3
Pl)�|H|2

Tdecay ⇠
p

MPl�D

⇠ 1.2 ⇥ 104
✓

MR

1014GeV
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GeV

➢ Majoron domination temperature:

➢ When Tdecay < Tdom, Majoron dominates the 
universe, and dilutes baryon asymmetry.

T
dom

⇠ (M2

R/M2

Pl

)T
osc

(⇠ (M2

R/M2

Pl

)

p
M

Pl

m�)

(← ρχ(Tdom)/ργ(Tdom)=1)
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Z10 model ➢ Decay operator:
➢ Decay temperature:

➢ When Tdecay < O(1) MeV, the Majoron decay 
spoils BBN.

O(7)
D ⇠ (M4

R/M3
Pl)�|H|2

Tdecay ⇠
p

MPl�D

⇠ 1.2 ⇥ 104
✓

MR

1014GeV
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T
dom

⇠ (M2

R/M2

Pl

)T
osc

(⇠ (M2

R/M2

Pl

)

p
M

Pl

m�)

(← ρχ(Tdom)/ργ(Tdom)=1)

➢ When MR < Tosc, NR is in the thermal bath, 
and conventional leptogenesis would take 
place if possible.

➢ Majoron domination temperature:

➢ When Tdecay < Tdom, Majoron dominates the 
universe, and dilutes baryon asymmetry.
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Z10 model ➢ Decay operator:
➢ Decay temperature:

➢ When Tdecay < O(1) MeV, the Majoron decay 
spoils BBN.
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(← ρχ(Tdom)/ργ(Tdom)=1)

➢ Majoron is thermalized by χ-H-H interaction.
➢ Thermalization temperature:

➢ When mχ < Tth, Majoron is thermalized.
Tth ⇠ 1.1 ⇥ 106 �MR/1014GeV

�8/3
GeV

➢ When MR < Tosc, NR is in the thermal bath, 
and conventional leptogenesis would take 
place if possible.

➢ Majoron domination temperature:

➢ When Tdecay < Tdom, Majoron dominates the 
universe, and dilutes baryon asymmetry.
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Z10 model ➢ Decay operator:
➢ Decay temperature:

➢ When Tdecay < O(1) MeV, the Majoron decay 
spoils BBN.
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(← ρχ(Tdom)/ργ(Tdom)=1)

➢ Majoron is thermalized by χ-H-H interaction.
➢ Thermalization temperature:

➢ When mχ < Tth, Majoron is thermalized.
Tth ⇠ 1.1 ⇥ 106 �MR/1014GeV

�8/3
GeV

➢ Isocurvature perturbation: Hinf/(2πMR) < 10-5

➢ Since Hosc < Hinf, at least Hosc/(2πMR) < 10-5 
should be satisfied.

➢ When MR < Tosc, NR is in the thermal bath, 
and conventional leptogenesis would take 
place if possible.

➢ Majoron domination temperature:

➢ When Tdecay < Tdom, Majoron dominates the 
universe, and dilutes baryon asymmetry.



4. Viable models

➢ Majoron mass:
➢ O(1-0.1)% fine-tuning is needed.
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Z10 model ➢ Decay operator:
➢ Decay temperature:

➢ When Tdecay < O(1) MeV, the Majoron decay 
spoils BBN.
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(← ρχ(Tdom)/ργ(Tdom)=1)

➢ When MR < Tosc, NR is in the thermal bath, 
and conventional leptogenesis would take 
place if possible.

➢ Majoron is thermalized by χ-H-H interaction.
➢ Thermalization temperature:

➢ When mχ < Tth, Majoron is thermalized.
Tth ⇠ 1.1 ⇥ 106 �MR/1014GeV

�8/3
GeV

➢ Isocurvature perturbation: Hinf/(2πMR) < 10-5

➢ Since Hosc < Hinf, at least Hosc/(2πMR) < 10-5 
should be satisfied.

➢ Majoron domination temperature:

➢ When Tdecay < Tdom, Majoron dominates the 
universe, and dilutes baryon asymmetry.
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Z10 model Z12 model
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➢ Majoron becomes rather stable in Z12 model, and thus, viable regions become narrow
➢ O(1-0.1)% fine-tuning is also needed in Z12 model



Summary

Summary

➤ We have studied a novel leptogenesis scenario; 
spontaneous leptogenesis.

➤ All of the necessary ingredients are automatically 
equipped in the Lagrangian:

➤ The neutrinoless double beta decay is a good probe 
of our scenario.

➤ We have shown that some viable models can be 
constructed.

L = LSM + N̄Ri/@NR � (y⌫ L̄HNR + h.c.) � gN

2
(�N̄C

R NR + h.c.) � V (H,�)


