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1 Introduction

Superstring theory Is a promising candidate
for unified theory of
all interactions including gravity,
(gauge bosons and graviton),
and all matter fields,
guarks and leptons and higgs fields.

Theory of Everything



Our world
If superstring theory is really the theory of everything

and/or it iIs meaningful in particle physics and
cosmology,
from superstring theory one can derive
the standard model (at low-energy scale)
SU(3)xSU(2)XU(1) gauge symmetry,
three chiral generations of quarks and leptons
as well as higgs,
experimental values, gauge couplings, Yukaws,
and answer further mysteries in particle physics
and cosmology, e.g. DM, inflaton, etc.
Superstring phenomenology and cosmology



String phenomenology

Superstring : theory around the Planck scale

SUSY 7 GUT 7
? 7?7?7272 Several scenario ??????
Standard Model : we know it up to 100 GeV

Superstring — low energy ? (top-down)
Low energy — underlying theory ? (bottom-up)
Both approaches are necessary to
connect between underlying theory and our Nature.



String phenomenology

Superstring predicts extra 6D compact space
In addition to our 4D spacetime.
There are lots of compactifications,
l.e. string landspace,
and physics depends on compactifications
There iIs no stringy principle to select one (for now).

However, we don’t need to care about the
compactifications, which can not realize our world,

electron mass = 0.5 MeV,
fine structure constant = 137,
etc.



Torus with magnetic flux

The SM is a chiral theory,
left-handed and right-handed fermions have
SU(3)xSU(2)xU(1) charges different from each other.

torus compactification is simple,
but leads to non-chiral theory (as shown later).

Torus with magnetic fluxes leads to
a chiral theory.



Torus with magnetic flux

The number of zero-modes,
l.e. the generation number,
IS determined by magnetic flux.

Magnetic flux
= non-trival zero-mode profile

M



Yukawa couplings

The Yukawa couplings are obtained by
overlap integral of their zero-mode w.f.’s.

Y =g|d*zyy, (2y (i (2)

= 0O(1) coupling
suppressed coupling




Torus with magnetic flux

Magnetic flux Is simple,
but Interesting.
chiral theory
the generation number
non-trivial profile

M



2. Torus with magnetic flux

2-1. Extra dimensions
4 + n dimensions

4D =  our 4D space-time
nD = compact space
Examples of compact space
torus, orbifold, CY, etc.




Field theory In higher dimensions

10D = 4D our space-time + 6D space

4D vector + 4D scalars

SO(10) spinor = S0O(4) spinor
X SO(6) spinor
Internal quantum number



Several Fields in higher dimensions
4D (Dirac) spinor
= (4D) Clifford algebra
(4x4) gamma matrices
represention space = spinor representation
6D Clifford algebra

Y (M =0,1,2,3)

a4 5

7/ 7 7/ I4><4®G,

6D spinor

6D spinor = 4D spinor x (internal spinor)
Internal quantum
number



Field theory In higher dimensions

Mode expansions
MO A, = (04D, + ADA, =0
iarr“p,+1r"pD,)A=0

ZX?’L(SCN) X n(Ym).

Z Son,M(mu) X Cbn,M(y’fI’L)

A6¢n,M(y) —
KK decomposition



KK docomposition on torus
iCmD " Pn(y) Y5

A6¢n,M(y)

torus with vanishing gauge background
Boundary conditions
B(Ya +L Ys) = $(¥a1 Ys) i

(Y4, Y5 +1) = (Y4, ¥s)

¢, : constant mode m =0
@, -exp(ikny) k=27/R m_ =kn
We concentrate on zero-modes.



4D effective theory
Higher dimensional Lagrangian (e.g. 10D)

L, =g d*xd®y Z(x, y)A(X, Y)A(X, Y)

Integrate the compact space = 4D theory

L, =Y [d*x7(x)p(x) 2(X)

Y =g[d°yF (e (y)

Coupling I1s obtained by the overlap
Integral of wavefunctions




Chiral theory

When we start with extra dimensional field theories,

how to realize chiral theories is one of important
Issues from the viewpoint of particle physics.

iy"Dhy =0

Zero-modes between chiral and anti-chiral
flelds are different from each other
on certain backgrounds,
e.g. CY, toroidal orbifold, warped orbifold,
magnetized extra dimension, etc.



Magnetic flux

iy" Dy =0

The limited number of solutions with
non-trivial backgrounds are known.
Generic CY is difficult.

Toroidal/Wapred orbifolds are well-known.
Background with magnetic flux Is
one of interesting backgrounds.



EFHZFDOESE  BIGHP DHIF(Landau)

EZEAk/IMT N I=ERFIRENF M=2#
M{E D EEIRRE k=0,1,2,.............,(M-1)




Higher Dimensional SYM theory with flux

4D Effective theory <= dimensional reduction

1 .
SY M — _TQQTT{FMNFMN} + 2;2

xXn (@) X hn (ym), il D" (y)
D enm(at) x o pr(ym) Aedpn v (y)

eigenstates of corresponding
Internal Dirac/Laplace operator.

The wave functions —



Higher Dimensional SYM theory with flux [SI@8)

Abelian gauge field on magnetized torus =

Constant magnetic flux ISl ES=_o}

b5
gauge fields of background { ,
b ~
1
27

The boundary conditions on torus (transformation under torus translations)

m(ya + 1,y5) = Am(ya,ys) + Omxa, x4 = bys

m(y4,y + 1) Am(y4,y )+ amX y X5 — Oa



Higher Dimensional SYM theory with flux [SI@8)

We now consider a complex field with charge Q (+/-1)

Y(ys + 1, ys) ' X4y (y4,y5) = e OY54(ya,ys),

b(ya,ys + 1) = € X5Y(y4, ys5) = ¥ (ya, ys),

Consistency of such transformations under
a contractible loop in torus which implies
Dirac’s quantization conditions.




Dirac equation on 2D torus

M Is the two component spinor.

U(1) charge Q=1

WO+ 2rMys|vy(y) = O
0 —27Mys|p—(y) = O

(ya + 1,ys) 2™ MY54)) (y4,ys),
w(yﬁl-ay + 1) w(yél-vy )3



Dirac equation and chiral fermion

M| independent zero mode solutions in Dirac equation.

; — M2 /M ,, . -
O (yq,ys) = Nje M . 9 { J/O (M (yq + iys), Mi)

/‘

Properties of

theta functions ] (v 4 mr,7) = o—mmAT=2mim(v4b) g [ ‘;

-

By introducing magnetic
-Normalizable mode flux, we can obtain chiral

(GRS
> /
M J 0= . :Non-normalizable theory.

d}_/_l_ mode




Wave functions

For the case of M=3
EXle®) EEe»] EEe»]

Wave function profile on toroidal background

Zero-modes wave functions are quasi-localized far away each
other in extra dimensions. Therefore the hierarchirally small
Yukawa couplings may be obtained.



Fermions in bifundamentals

Breaking the gauge group eI EYIGHAEIIOD
(Abelian flux case Mo, My € Z

A0 (zy) APO(z,y)

aa ab
The gaugino fields A(x,y)z(/\ (@y) A (W)).

A and \00
— (Na, Ny), (Na, Np).
If both appear in 4D, that is non-chiral theory.



Zero-modes Dirac equations

[ 0+ 27 (M — Ma)ya wl_’ﬁ’ &Pﬂ?

Do [0 — 2m(Mq — My)yal 92\ _
9 2n (M, Ma)ya] 41 bt -

No effect due to magnetic flux for adjoint matter fields, INiEETTeIP)

Total number of zero-modes of FX&é [> [, = |]Wa — ]Wb|

Wi ide :Normalizable mode

Wialew  :Non-Normalizable mode




4D chiral theory
10D spinor
light-cone 8s
even number of minus signs
1st = 4D, the other = 6D space
If all of [CETRIE DRG] appear
In 4D theory, that is non-chiral theory.

(£,+ + +)

If for all torus,
b (Na, Wb) (+,+++)

only

appear for 4D helicity fixed.
= 4D chiral theory



Wilson lines

torus without magnetic flux
constant Al - mass shift

every charged modes massive
magnetic flux

o+2zx(My +a)|y, =0

|6 —22(My +a)]|y_ =0
the number of zero-modes is the same.
the profile: f(y) = f(y +a/M)
with proper b.c.



U(1)a*U(1)b theory (or U(2) theory)
magnetic flux, Fa=2nM, Fb=0
Wilson line, Aa=0, Ab=C
matter fermions with U(1) charges, (Qa,Qb)
chiral spectrum,
for Qa=0, massive due to nonvanishing WL
when MQa >0, the number of zero-modes
IS MQa.
zero-mode profile Is shifted depending

SNSRI [ (2) = f(z+CQ,/(MQ,))



Pati-Salam model

N,=4,N,=2,N,=2

Pati-Salam group U (4) U (2)L U (2)R
(m, —m,) =(m, —m,) = 3for the first T >
(m, —m,) = (M, —m,) =1for the other tori

three families of (4,2,1) + (4,1,2)

WLs along a U(1) in U(4) and a U(1) in U(2)R
=> Standard gauge group up to U(1) factors

U (3). xU(2), xU (D)°

U(1)Y Is a linear combination.



PS => SM

Zero modes corresponding to (41211) + (4,1, 2)
three families of matter fields
remain after introducing WLs, but their profiles split

(4,21) = (3,2,1) + (1,2,2)
(41,2)=(311)+(3,1,)+ (111 + (1,1,1)




3. SO(32) heterotic string theory

Heterotic string theory

ESXE8 vs SO(32)

— E8XE8 or SO(32) 10D N=1 SYM
E8 > E7 > E6 > SO(10) > SU(5) > SU(3)xSU(2)xU(1)
E8 adj. includes SO(10) 16, which is one generation

of quarks and leptons
Including right-handed neutrinos
SO(32) adj. does not include SO(10) 16.
People preferd ESXE8 heterotic string theory
to SO(32) theory in order to derive the SM.



SO(32) adjoint representation

16 U(1)’s in SO(32)
We introduce magnetic fluxes along 13 U(1)’
among 16 U(1)’s.
SO(32) breaks to SU(3)xSU(2)xU(1) with 12 U(1)’s.

SO(32) adj. = 2x(3,2) + 2x(3,2)

+several(3,1) +several(1,2) +
+ (lots of singlets)

Magnetic fluxes determines the number of chiral zero-modes
We search magnetic fluxes such that three chiral generations
of quarks and leptons appear.



10D effective field theory

10D action at tree level

Iez¢[R+4d¢/\*d¢—%H /\*H:|

2
2K10

je—2¢tr(|: A*F)
4910

H =dB — - (@, -

gauge and gravitational Chern-Simons terms

da,, =tr(F A F), do=tr(RAR)




10D effective field theory

Green-Schwarz term

1
2427)° '

|BAX,

LTrEY - (TrF?)?
7200

1 1
_ L (TrE))(trR?) + ZtrR* + —— (trR?
240( )(trR~) S 2> (trR?)*

For some U(1) factors,
there appear BF couplings in 4D action.
That makes U(1) gauge bosons massive



Massive U(1) gauge bosons

Green-Schwarz mechanism

(dB)? —2cBF

p—
(dB — cA)? — c2 A2

U(1)Y should not couple to B.
Bii (1I=1,2,3) on the I-th torus.
B for 4D
Totally, there are four conditions on magnetic fluxes.



K-theory condition

SO(32) heterotic string

S-dual type |
type 1B D9-brane system

D5-brane, —-> NS five-brane in hetero.
Introduction of all possible probe D-brane

—> constraints due to discrete K-theory charge, Z2

such as Witten anomaly
—> constraints on magnetic fluxes



NS five brane

10D action

L [edB® AxdB®

4’('120
+ L[ BO A (IrF? —trR? —4(27)° Y N,5(T,))

8K,
+*dB = e??dB(®

tadpole candellation condition

[ (rF2-4@27)*> N,8(T,))=0

If only magnetic fluxes themselves satisfy this condition,
we don’t need five-branes, otherwise we need five-branes.




Model search

We have found many models
the gauge symmetry including SU(3)xSU(2)xU(1)Y
exactly three chiral generations of quarks and leptons
and vector-like matter including higgs (higgsino)
and lots of singlets.

In many models, the gauge symmetry is enhanced
to SU(4)xSU(2)xXU(2) with non-Abelian hidden groups

Wilson lines break SU(4)xSU(2)xSU(2)
to SU(3)xSU(2)xU(L1)Y.



Model

Magnetic fluxes along 13U(1) directions
2m, = (1,-3,-1), 2m, =(7,-11), m, =(0,0,0)
2m, =—-2m, = (—5,—1,5)

2m5,6,7,8 — _2m10,11,12,13,14 — (3’1’1)

with Wilson line breaking
the gauge symmetry SU(3)xSU(2)xU(1)y
exactly three chiral generations of quarks and leptons
vector-like matter and singlets

There are many models with such aspects.



Flavor structure

In some models, the number of generations is obtained
by magnetic fluxes
and those quarks and /or leptons have the same
extra U(1) charges.

In other models, three families of quarks and/or leptons
have different extra U(1) charges.

For example, there are models with SU(3) flavor symmetries
for right-handed quarks and leptons
Wilson line breaking and another breaking



Next

We have constructed the models with realistic
massless spectrum.

SU(3)x SU(2)xU(1)Y gauge symmetry
exactly three chiral generations of
guarks and leptons,
and vector-like matter and singlets.

What is next ?
Are these models realistic quantitatively ?

Gauge couplings, quarks/lepton masses and mixing angles,
Higgs potential,,,,,,,,,



4. Gauge coupling unification

10D action at tree level

Ie‘z"’tr(F A *F)

4D action

gauge kinetic function f =S

Gauge couplings are unified at the string scale.



Universal axion

10D action

j e 2B® A (trF2 —trR% —4(27)*Y N, 5(T))

8K10

B =bx (6D volume form) +....

4D action -

gauge kinetic function f =S
IMm(S) c b




Gauge couplings

experimental values

RG flow =

They approach each other

and become similar values
at high energy

U(1)Y GUT normalization

Gauge coupling unification




10D effective field theory

Green-Schwarz term

1
2427)° '

|BAX,

LTrEY - (TrF?)?
7200

1 1
_ L (TrE))(trR?) + ZtrR* + —— (trR?
240( )(trR~) S 2> (trR?)*

Because of magnetic fluxes,
Bii couples to SU(3) and SU(2) non-universally.



AXIions

Green-Schwarz term

;5_[ B A Xg
24(27) o'

Xg = L rEe (TrF?)?

- 24 7200

1 1 1
— —— (TrF*)(trR?) + =trR* + — (tfrR*?)"?
240( ) ) 8 32( )

2D volume form corresponding to i-th 2D torus
bi couples to SU(3) and SU(2) non-universally.



Non-universal gauge kinetic functions

Moduli dependence




Gauge coupling unification

In a certain model with specific values of moduli,
we can fit the gauge couplings to experimental values.

SUSY
Non-vanishing magnetic fluxes induce D-term
(moduli-dependent FI -term)

MSSM: We assume that these are vanishing.
SM : We assume that these are not vanishing.



Moduli values

In a certain model with specific values of moduli,
we can fit the gauge couplings to experimental values.
For fixed magnetic fluxes,
there are three conditions (gauge couplings)
among four parameters, S, T1, T2, T3,
e.g. for MSSM
S =247

T, =0.86T, +0.21 (2m;.2m;’.2m;) = (1,-3,-1)
2 — M- 1 -

(2m;,2m2,2m;) = (7,—-11)

T, =0.71T, + 0.81

All of the moduli values as well as V6
can be of O(1) .



\

WishNmagnetic fluxes.

L ""u

\/\/e can ealize

L

JJ( J XSU(Z)XU(l)Y gauge symmetry,

,L._,_ =

L':--i-'** [t0)f '1'|ke matter and singlets.

= -
B 1—--' _‘-'
._:I——__.-t- o
— - =

Gauge couplings have non-universal corrections.
One can fit them to experimental values
Py using free parameters, modull.
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1\‘*’Jassless se::rr.rrr |
SEIIYENC ,)Jm Js can be reall
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)enyru r']J ] o) "reallstlc values of quark/lepton
SIIIESSES -_d mixing angles.

— pie --_
= = _-l-— P e

_1_—-— — e
1___._.__‘ o - -

_-—l-rt-:_.-l——

“'Modull stablllzatlon

SUSY breaking and SUSY spectrum
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