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Outline

   - Testing and constraining GR+LCDM
- Growth rate + Alcock-Paczynski

- Anisotropic Clustering (w/ YS Song, E. Linder, et al) 

- utilizing the Alcock-Paczynski effect
- Clustering peaks (w/ YongSeon Song) 
- Clustering shells (w/ Changbom Park, XiaoDong Li)

- Constraints on Modified Gravity?
- Using the cut-density field (w/ Istvan Szapudi & Melody Wolk)
- In redshift-space (w/ David Mota & Claudio Llinares)
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Key observables in spectroscopic galaxy surveys:

(1) Angular diameter distance DA
- Exploiting BAO as standard rulers which measure the angular 
diameter distance and expansion rate as a function of redshift.

(2) Radial distance H-1

- Exploiting redshift distortions as intrinsic anisotropy to decompose 
the radial distance represented by the inverse of Hubble rate as a 
function of redshift.

(3) Growth Rate, f  (dδ/d ln a)
- The coherent motion, or flow, of galaxies can be statistically 
estimated from their effect on the clustering measurements of large 
redshift surveys, or through the measurement of redshift space 
distortions.

These are essential to test theoretical models explaining cosmic 
acceleration; ΛCDM, Dynamical DE, Einstein’s gravity
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which leads to apparent anisotropy even if the adopted cos-
mology is correct (Ballinger Peacock & Heavens 1996). In Li
et al. (2014) we proposed a new method utilizing the red-
shift dependence of AP effect to overcome the RSD problem,
which uses the isotropy of the galaxy density gradient field.
We found that the redshift dependence of the anisotropy
created by RSD is much less significant compared with the
anisotropy caused by AP. Thus we measured the redshift de-
pendence of the galaxy density gradient field, which is less
affected by RSD, but still sensitive to cosmological parame-
ters.

The two-point correlation analysis is the most widely
used method to study the large scale clusterings of galax-
ies. So, in this paper we revisit the topic of Li et al. (2014)
using the galaxy two-point correlation function (2pCF). By
investigating the redshift dependence of anisotropic galaxy
clustering we can measure the AP effect despite of contam-
ination from RSD. Moreover, if the redshift evolution of
galaxy bias can be reliably modelled, then we can measure
the redshift evolution of volume effect from the amplitude
of 2pCF. The change of the comoving volume size is another
consequence of a wrongly adopted cosmology, which has mo-
tivated methods constraining cosmological parameters from
number counting of galaxy clusters (Press & Shechter 1974;
Viana & Liddle 1996) and topology (Park & Kim 2010).

The outline of this paper proceeds as follows. In §2 we
briefly review the nature and consequences of the AP effect
and volume changes when performing coordinate transforms
in a cosmological context. In §3 we describe the N-body
simulations and mock galaxy catalogues that are used to
test our methodology. In §4 we will describe our new analysis
method for quantifying the anisotropic clustering as well as
proposing a way to deal with the RSD that are convolved
with the AP distortion. Here we will also present results of
our optimised estimator. We conclude in §5.

2 THE AP AND VOLUME EFFECT DUE TO

WRONGLY ASSUMED COSMOLOGICAL

PARAMETERS

The AP and volume effect due to wrongly assumed cosmo-
logical parameters are shown in the upper panel of Figure
1. Suppose that the true cosmology is a flat ΛCDM with
present density parameter Ωm = 0.26 and standard dark
energy equation of state (EoS) w = −1. If we were to dis-
tribute four perfect squares at various distances from 500
Mpc/h to 3,000 Mpc/h, and an observer were to measure
their redshifts and compute their positions and shapes us-
ing redshift-distance relations of two incorrect cosmologies:

(i) Ωm = 0.41, w = −1.3,
(ii) Ωm = 0.11, w = −0.7,

the shapes of the squares appear distorted (AP effect), and
their volumes are changed (volume effect). In the cosmolog-
ical model (ii) with Ωm = 0.11, w = −0.7, we see a stretch
of the shape in the LOS direction (hereafter “LOS shape
stretch”) and magnification of the volume (hereafter “vol-
ume magnification”), while in the model with Ωm = 0.41,
w = −1.3, we see opposite effects, with LOS shape compres-
sion and volume shrinkage.

The degree of LOS shape stretch and volume magnifi-
cation can be described by the following quantities

[∆r‖/∆r⊥]wrong

[∆r‖/∆r⊥]true
=

[DA(z)H(z)]true
[DA(z)H(z)]wrong

, (1)

Volumewrong

Volumetrue
=

[DA(z)2/H(z)]wrong

[DA(z)2/H(z)]true
, (2)

where ∆r‖, ∆r⊥ are the angular and radial sizes of the ob-
jects, and “true” and “wrong” denote the values of quanti-
ties in the true cosmology and wrongly assumed cosmology.
DA and H are the angular diameter distance and Hubble
parameter, respectively. In the particular case of a flat uni-
verse with constant dark energy EoS, they take the forms
of

H(z) = H0

√

Ωma−3 + (1− Ωm)a−3(1+w),

DA(z) =
1

1 + z
r(z) =

1
1 + z

∫ z

0

dz′

H(z′)
, (3)

where a = 1/(1 + z) is the cosmic scale factor, H0 is the
present value of Hubble parameter and r(z) is the comoving
distance.

In the lower panel of Figure 1, we plot the degree of
LOS shape stretch and volume magnification as functions
of redshift. In cosmology (i), both quantities have value
less than 1, indicating LOS shape compression and volume
shrink. The effect in cosmology (ii) is slightly more subtle.
At low redshift, the effect of dark energy is important, and
there is LOS shape compression and volume reduction due
to the quintessence like dark energy EoS. However, at higher
redshift the role of dark matter is more important, and we
see LOS shape stretch and volume magnification due to the
small Ωm.

More importantly, Figure 1 highlights the redshift de-
pendence of the AP and volume effects. For example, in the
cosmology with Ωm = 0.41, w = −1.3, both the LOS shape
stretch and volume magnification become more significant
with increasing redshift. In the cosmology with Ωm = 0.11,
w = −0.7, not only do the magnitudes of the effects evolve
with redshift, but there is also a turnover from LOS shape
compression and volume shrink at lower redshift to LOS
shape stretch and volume magnification at higher redshift.

3 DATA

We test the methodology using mock surveys constructed
from one of the Horizon Run simulations, HR3. HR3 are a
suite of large volume N-body simulations that have resolu-
tions and volumes capable of reproducing the observational
statistics of many current major redshift surveys like SDSS
BOSS etc (Park et al. 2005; Kim et al. 2009, 2011). HR3
adopts a flat-space ΛCDM cosmology with the WMAP 5
year parameters Ωm = 0.26, H0 = 72km/s/Mpc, ns = 0.96
and σ8 = 0.79 (Komatsu et al. 2011). The simulation was
made in a cube of volume (10.815 h−1Gpc)3 using 71203

particles with particle mass of 1.25 × 1011h−1M% .
The simulations were integrated from z = 27 and

reached z = 0 after making Nstep = 600 timesteps. Dark
matter halos were identified using the Friend-of-Friend algo-
rithm with the linking length of 0.2 times the mean particle

c© 2002 RAS, MNRAS 000, 1–8
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- We want to know the density perturbations in the universe (at various 
cosmic times). This will tell us about the cosmic expansion (a) and gravity, 
through the growth of structure. 

We don’t ‘see’ perturbations of the total density field.
We observe individual galaxies that trace that underlying matter 
distribution.

How are galaxies and 
DM related?

- Halo Model
- Bias

- Scale Dependent? 

- Velocity Field Bias?

From Observation to theory

4



- We want to know the density perturbations in the universe (at various 
cosmic times). This will tell us about the cosmic expansion (a) and gravity, 
through the growth of structure. 

Also....

We don’t ‘see’ the true radial position of galaxies 
We see its redshift, which is composed of a hubble expansion and a peculiar 
velocity due to local gravitational dynamics.

Furthermore, even if the galaxy is not moving gravitationally, we still do not 
know its true position in comoving space, since we need to transform 
(theta, phi, redshift) -> (x,y,z) using a cosmological model with a specific 
choice of parameters. Eg LCDM Om=0.3, Ol=0.7, w=-1 etc etc

We also don’t see the galaxy’s true angular position on the sky due to 
gravitational lensing, but let’s leave that for another talk.

So, where do we go from here?

From Observation to theory
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1000 small-core fibers to replace existing
(more objects, less sky contamination)

LBNL CCDs + new gratings improve throughput
Update electronics + DAQ

• Straightforward upgrades to be  
commissioned in summer 2009
SDSS telescope + most systems unchanged

Apache Point Observatory
(SDSS 2.5m telescope)

Imaging with 30 2048 × 2048 SITe/Tektronix 49.2 
mm square CCDs on a field of view 2.5 deg 
operating in drift scan mode. 

Photometry in standard UGRIZ bands

The Data: Baryon Oscillation 
Spectroscopic Survey (BOSS)
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Final footprint

Completed

BOSS July 2010

BOSS: Survey Progress
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Final footprint

Completed

BOSS July 2011 (Data Release 9)

BOSS: Survey Progress
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Final footprint

Completed

BOSS July 2012 (Data Release 10)

BOSS: Survey Progress



Final footprint

Completed

Galaxy redshift success rate 97% (requirement was >=94%)

BOSS July 2013 (Data Release 11)

BOSS: Survey Progress



We want to evaluate:
where    is the density 
contrast

5

��(x)�(x + r)⇥

We call this the Two Point 
Correlation Function (2PCF) �i(r) =

ni(r)
n̄.dV

� 1

�

The estimator for this 
statistic is: �(r) =

DD � 2DR + RR

RR

dP = n2[1 + �(r)]dV1dV2This lead to the probability:

Correlation Functions
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contrast
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We call this the Two Point 
Correlation Function (2PCF) �i(r) =

ni(r)
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� 1

�

The estimator for this 
statistic is: �(r) =

DD � 2DR + RR

RR

dP = n2[1 + �(r)]dV1dV2This lead to the probability:

Correlation Functions

BOSS - Baryon Acoustic Oscillation
• Imprint of the acoustic phenomena caused by the coupling of the 

photon and gas perturbations in the early-universe (< 0.4 Myr). 
• The physical scale is well-understood, thus can be used as a 

standard ruler.
• It shows up as an enhanced overdensity with a characteristic scale 

of  ~ 150 Mpc. 

(From D. Eisenstein) (www.sdss3.org)
Monday, 20 January 14
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• I will present everything in terms of 
correlation statistics because they are 
easier to compute on real data

• However... Correlation functions and Power 
Spectra are informationally equivalent

• Xi(r) <~> P(k)
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σ
π

r
Bin galaxy pairs in two distances (π,σ) 
instead of the single distance between 
pairs, r.

Apart from the binning this is the same 
as doing the 2PCF.

And if there are no preferred directions 
then the correlation function will give 
perfectly circular contours in (π,σ).

observer 7

Anisotropic 2PCF

�(r) =
DD � 2DR + RR

RR

From 1D to 2D
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π
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3 contributions to anisotropic clustering:
- Fingers of God (FoG)
- Large Scale Velocities (Kaiser)
- Incorrect cosmological parameters

- Alcock-Paczynski effect (AP)

Anisotropic 2PCF

16



Red - No RSD
Dashed - Linear
Solid - Linear + FoG

Nonlinear regime 
theoretically 

difficult to model

17M. White et al (2011)

Anisotropic 2PCF

The amount of ‘squashing’ 
gives us the growth
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Kaiser Effect
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FIG. 1: (Left panel) Theoretical 2D–correlation function ξs(σ, π) with Kaiser limit (unfilled black contours) and with modified Kaiser
effect (filled blue contours). Levels of the contours are ξs(σ, π) = (1, 0.5, 0.2, 0.1) from inner to outer contours. Contours in the upper
panel are derived from ΛCDM model with density bias b = 1.82 at z = 0.25, and contours in the lower panel are derived from ΛCDM
model with density bias b = 1.92 at z = 0.38. Right panel The observed 2D–correlation function ξs(σ, π) from SDSS DR7 LRG catalogue
with the same levels as the filled blue contours in the left panel. The mean redshift of upper and lower panels are z = 0.25 and z = 0.38
respectively.

C. Modified Kaiser limit

It has been pointed out in [25] that the description of
ξs(σ, π) on large scales (in linear theory) will be modified
due to the dispersion effects in the π direction. This effect
was recently investigated using N -body simulations and
found to be important [26]. Therefore, in this paper, we
modify the Kaiser limit using a Gaussian velocity disper-
sion term for G, which we will refer to as the “modified
Kaiser limit” throughout. This model has been shown
to work reasonable well on mock catalogues of a ΛCDM
Universe (see [27, 28]).

In detail, we can write G as

G(k, µ, σv) = e−k2µ2σ2
v , (15)

where σv is the 1–D velocity dispersion on large scales,
and is the parameter of interest in this paper. We can
write σv as,

σ2
v =

1
6π2

∫
P lin

ΘΘ(k, z)dk . , (16)

where we see that σv has units of h Mpc−1 as P lin
ΘΘ and

k have units of (h−1 Mpc)3 and h Mpc−1 respectively.
We stress that σv has units of length, while in the previ-
ous literature it has been called the “velocity dispersion”
which is confusing. For consistency, we maintain this
terminology, but note that one could convert to units of

km/s using aH(a)σv, but that would then depend on pre-
cise measurements of the expansion history in addition
to the determined P lin

ΘΘ from our method.

We therefore modify the Kaiser limit using G defined in
Eq. 15, but keeping P (k) = P lin(k). Then the integration
of ξl in Eq. 6 should be re–expressed, as G changes with
varying g∗

Θ altering σv in Eq. 16 to,

ξ∗l (r) =
∫

k2dkdµ

(2π)2
D∗

m(k)e−(kµσv)2 cos (krµ)Pl(µ) . (17)

For illustrative purposes, in the left–hand panel of
Fig. 1, we present the model ξs(σ, π) for the standard
Kaiser limit (unfilled black contours) compared to the
modified Kaiser limit (filled blue contours) discussed
above. In these examples, we have used a galaxy bias
of b = 1.86 and 1.88 at z = 0.25 (upper panel) and 0.38
(lower panel) respectively (These values of b were chosen
to correspond to our estimated bias values from Table I
to simply illustrate our point). The additional suppres-
sion in the modified Kaiser effect can clearly be seen on
large–scales (in the linear regime) at approximately the
10 to 20% level.

SDSS DR7 LRGsTheoretical Predictions

Large Scale Flows
Measuring coherent motions from redshift distortions
Using SDSS Clusters  Song, CGS, Nichol, Miller (2010) arXiv:1001.1154
Using SDSS LRGs     Song, CGS, Kayo, Nichol (2011)  arXiv:1006.4630

Streaming model
Scoccimarro ’04

http://lanl.arxiv.org/abs/1001.1154
http://lanl.arxiv.org/abs/1001.1154
http://lanl.arxiv.org/abs/1001.1154
http://lanl.arxiv.org/abs/1001.1154
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FIG. 4: Constraints on g∗
b and σv. Unfilled black contours denote the result with Kaiser limit only, while the filled blue contours

are the results including the velocity dispersion effect discussed in the test and called our “modified Kaiser effect”.

discarding small–scale data which may be affected by
non–linearity significantly, and our rejection will be con-
servative. We find that the effect of non-linearity is over
20% at the scale of σ < 5 h−1 Mpc in the redshift range
of our data, and discard these data from our analysis.
Shown in the right panel of Fig. 1, measured ξs(σ, π)
at bins of σ > 5 h−1 Mpc is consistent with theoretical
prediction (compared with the left panel of Fig. 1), but
ξs(σ, π) at bins of σ < 5 h−1 Mpc does not match well
with the theoretical prediction from the modified Kaiser
effect. In this paper, we use σ > 5 h−1 Mpc cut–off.

BOB: what simulations are you discussing in the last
paragraph? Provide a reference or discuss in more detail.
I found the above paragraph quite hard to read, but did
not edit it as I was unsure of your point. Maybe try and
be more succinct here?

BOB: I’m confused at the end of the subsection. Are
we imposing two cut-offs or one? Why are the scales
different? Which is more important? Maybe end this
subsection is a short summary statement e.g., ”In sum-
mary, we impose two (?) cuts-offs in scale to control the
contamination of small-scale non-linearities on our larger
scale measurements. These are.......”

YSS: I modify in more comprehensive way. If there is
more thing to do, then we need talk

IV. MEASURED COHERENT MOTIONS

A. Consequences of the correction to the Kaiser
limit

Using the data and method outlined in Sections II and
III, we measure g∗

b and g∗Θ simultaneously from the SDSS
DR7 LRG correlation functions assuming the appropri-
ate WMAP7 priors as discussed above. As illustrated
in Fig. 1, there is excellent visual consistency on large
scales between our predicted ξs(σ, π) and the observed
functions. In detail, we obtain a reduced χ2

red ∼ 0.89
and 0.83 for the z = 0.25 and 0.38 samples in Fig. 1
chimin=3.1 dof=12, and 2.48 and dof=9. In Fig. 4, we
present constraints on g∗

b and σv (σv is converted from
measured g∗

Θ using Eq. 16). In Kaiser limit, variation of
coherent growth function of galaxy density fields ampli-
fies mainly monopole moment of ξs(σ, π), and variation of
coherent motions affects on anisotropy of ξs(σ, π) most.
Measured g∗

b and g∗Θ using Kaiser limit are presented in
unfilled black contours of Fig. 4.

Velocity dispersion effect in the correlation function
ξs(σ, π) of the modified Kaiser effect in Eq. 17 in-
duces additional suppression to ξs(σ, π) of Kaiser limit
in Eq. 6. Then variation of coherent flow motions leads
to monopole suppression as well as anisotropic amplifi-
cation. As coherent motions increase, corresponding g∗

b
becomes smaller due to the increasing suppression by ve-
locity dispersion effect. Shown in filled blue contours of
Fig. 4, best fit g∗

b is shifted to the left and contours are
elongated to smaller g∗

b at higher σv. While difference of
measured σv between Kaiser limit and modified Kaiser
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FIG. 5: We present the measured evolution of coherent galaxy
motions at the mean z = 0.25 and 0.38 which are consistent with
prediction from WMAP7–normalised ΛCDM model (solid curve).
Dotted curves represent predictions from dark energy models with
constant w = −1.4,−1.2,−0.8 and −0.6 from top to bottom, and
dash curve is for DGP model.

C. Tracing the history of coherent motions of
galaxies

In Fig. 5, we present our measurements of σv, the co-
herent motions of galaxies in redshift space, versus red-
shift and compared to theoretical predictions. As can
be seen, our measurements are fully consistent with the
WMAP7–normalized ΛCDM model. This represents a
“clean” test of these cosmological models free from con-
tamination of non–linear physics on small–scales and un-
certainty due to galaxy bias determination. These data
probe the growth history of fluctuations in the Universe
and thus complementary to the geometrical probes of the
Universe.

As discussed in Section I, local measurements (z < 0.2)
of the peculiar velocity field of galaxies and clusters indi-
cate that their coherent motions are larger than expected
for the WMAP7–normalized ΛCDM. If we convert these
local measurements, using aHσv, to the redshift range
studied in this paper, we would expect σv ! 600km/s,
which is well in excess of the ΛCDM predictions (thus
confirming their original result) and also much larger (by
many sigma) than our observed values. For more direct
cross–checking that, it would be needed to provide σv at
lower redshift than ours.

The analysis above is a bit strange. I would convert the
local motions from km/s into length units and then plot
it on Fig 4 at z 0.1? This would illustrate the point that
they are too large compared to the predictions which are

nicely plotted in Fig 4. Please check the above paragraph
that I have the right wording

In Fig 5, we also present predicted curves for the coher-
ent motion of galaxies for a variety of dark energy models
with varying constant equation of state from w = −1.4 to
−0.6 (dotted curves). All the other cosmological parame-
ters were fixed to be same as the WMAP7 best fit ΛCDM
values, except w. Using these curves, we can approxi-
mately estimate that we gain a constraint of σ(w) ∼ 0.2,
at median value of w ∼ −1, from our σv measurements.
This is consistent and complementary to the similar con-
straints from geometrical observations of the Universe.

Can you reference Lampeitl et al. 2010 at the end of
the above paragraph for geometrical constraints on w.
YSS: I will do it

Finally, we also provide in Fig 5 a prediction for
the Dvali-Gabadadze-Porrati (DGP) self-accelerating
braneworld scenario [44]. As can be seen, this cosmo-
logical model provides a poor description of our obser-
vations (5 σ discrepancy), which support other obser-
vational constraints on this model from the cosmic mi-
crowave background (CMB) anisotropy, supernovae and
Hubble constant data [45].

V. CONCLUSION

We present in this paper new measurements of the co-
herent motions of galaxies on large-scales derived from
a new methodology for analysing the redshift–space dis-
tortions witnessed in the observed two–dimensional two–
point correlation function of Luminous Red Galaxies
from the SDSS DR7 sample. Our new methodology is
based on measuring scale–independent growth functions
of g∗b (galaxy density) and g∗

Θ (velocity density), which
do not depend upon the physics of the late universe (e.g.
dark energy), but do exploit our knowledge from the
CMB of the early Universe.

We have determined values of g∗
Θ from the redshift–

space distortions seen in the SDSS DR7 LRG data and,
converting these values into the 1–D velocity disper-
sion σv, we find σv = 3.01+0.45

−0.46 h−1 Mpc at z = 0.25
and σv = 3.69+0.47

−0.47 at z = 0.38. These values for σv

are fully consistent with a WMAP7 ΛCDM model with
w ! −1 ± 0.2 as seen in Fig 5. Our observations are
however, inconsistent with a DGP model for the Uni-
verse to high statistical significance (> 5σ). Our results
provide a competitive, and complementary, constraint on
these cosmological models compared to the usual geomet-
ric probes of the Universe.

We have converted our measured values of σv into ve-
locity units (as opposed to lengths presented in the above
paragraph) and find 270+40

−41 km/s and 320+41
−41 km/s at a

mean redshift of z = 0.26 and 0.38 respectively , with
assumed ΛCDM Universe. As expected, these coherent
motions (or velocity dispersions) are fully consistent with
expectations from a ΛCDM Universe. These estimates
are however, inconsistent with local measurements of the

Splitting in 2 redshift bins 
we explore the growth 
as a function of redshift

Song, Sabiu, Kayo, Nichol (2011) 

Large Scale Flows



Taruya, Nishimichi, Saito (2010) arXiv: 1006.0699
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TNS model

<ABeC> ≠ <AB><eC>

Kaiser and FoG cannot be so simply separated as the 
two functions are anisotropic in k-space. Since in 
general,

TNS proposed an improved model of the redshift-space power 
spectrum, in which the coupling between the density and velocity fields 
associated with the Kaiser and the FoG effects is perturbatively 
incorporated into the power spectrum expression. The resultant 
expression includes nonlinear corrections consisting of higher-order 
polynomials.

Streaming model

In going to larger scales and with more precise measurements, 
theoretical advancements must also be utilized. 



22

TNS model

streaming model

Redshift-space distortions 
(contd.): TNS model

with a help of cumulant expansion theorem

A term ∝ cross-bispectrum of δ & θ
B term ∝ sum of convolutions of Pδθ & Pθθ
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new terms!

TNS modeland keep terms up to j12            (j1=-ikμf) streaming model
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mentioned above, successfully placed constraints on cos-
mological parameters. However, such statistics become
complicated when one considers excluding data along the
line-of-sight, e.g. that are much noisier than the data per-
pendicular to it [32] or are difficult to model accurately
because of velocity or nonlinear effects. It is thus mean-
ingful to present the analysis of the correlation function
in the transverse-radial plane, without angle averaging,
as a complementary method.
Another advantage of using the full 2D correlation

function is that one can easily distinguish between the
geometric and velocity (RSD) effects, clarifying the phys-
ical interpretation. The 2D correlation function including
the BAO scale was first analyzed by [33] but the analysis
relied on linear theory [34]. In [23] we developed a for-
malism that predicts the correlation function in the 2D
plane with nonlinear perturbation theory. Following the
method tested in [23], we here fit the clustering correla-
tion function in the transverse-radial plane to data.
The outline of this paper proceeds as follows. In Sec. II

we briefly review the analysis method and treatment of
nonlinearities and velocity effects. Section III details the
measurement procedure including estimation of the co-
variance matrix. The results are presented in Sec. IV and
the implications for cosmological models are discussed in
Sec. V. We conclude in Sec. VI, with Appendix A ex-
ploring cautions regarding interpretation of zeff at the
accuracy of next generation surveys.

II. THEORETICAL MODEL

The two–point correlation function of galaxy cluster-
ing, ξs, is described as a function of σ and π in the
distant-observer limit, where σ and π are the transverse
and the radial directions with respect to the observer.
As mentioned in the Introduction, several effects give
rise to anisotropy between these directions. In the linear
density perturbation regime, RSD causes the clustering
pattern to be squeezed along the line of sight (i.e. the
π-direction), leading to an apparent enhancement of the
amplitude of the observed correlation function. This is
known as Kaiser effect [1]. On the other hand, in the non–
linear regime, the random virial motions of galaxies resid-
ing in halos introduce elongated clustering along the line
of sight, which is dubbed the Finger of God effect (FoG).
This dispersion effect has significant impact, and even
on large scales (in linear theory), a simple description of
ξs(σ,π) using the Kaiser formula alone may not be ade-
quate along the π direction (e.g., [32]). In our previous
paper, we combined this dispersion effect with the Kaiser
formula to analyze two–dimensional anisotropy structure
of DR7 catalogue [35].
The precision of the updated DR9 clustering catalog is

greatly improved. Due to this improvement, systematic
uncertainties in accounting for the anisotropic clustering
effects gain greater influence. Therefore we here employ
improved distortion models to analyze the better preci-

sion maps. Due to a strong correlation between density
and velocity fields, the mapping between real and red-
shift space is intrinsically non–linear [36]. In general,
it appears as a not–closed iteration of polynomials for
which a more elaborate description than simple factor-
ized formulation needs to be used. However at large
separation several leading polynomials dominate. In ad-
dition, we apply the non–linear correction terms using
the resummed perturbation theory called RegPT [37, 38].
When restricting analysis to the quasi-linear regime, the
result is the non–linear portions of the power spectra are
better separated from the linear spectra, for which the
assumption of perfect cross–correlation between density
and velocity fields is verified.
In brief, we adopt the redshift-space power spectrum,

P̃ (k, µ), given in Ref. [36], which can be recast as

P̃ (k, µ) =
4

∑

n=0

Q2n(k)µ
2n GFoG(kµσp) , (1)

where σp is a free parameter representing small scale ve-
locity effects. Our previous analysis suggests that as long
as we consider the weakly nonlinear scales, cosmologi-
cal analysis can be made independently of the functional
form of FoG effect. The functions Q2n are given in [39].
From the power spectrum one can compute the corre-

lation function by Fourier transform. The redshift-space
correlation function ξ(σ, µ) is generally expanded as

ξs(σ,π) =

∫

d3k

(2π)3
P̃ (k, µ)eik·s

=
∑

! even

ξ!(s)P!(ν) , (2)

with P being the Legendre polynomials. Here, we define
ν = π/s and s = (σ2 + π2)1/2. The moments of cor-
relation function are given in [23]. Here we include the
moments up to % = 6, since the higher-order moments
% ≥ 8 are shown to contribute negligibly.

III. MEASUREMENTS

A. Data Sample

We use data from the Sloan Digital Sky Survey [SDSS;
40], Data Release 9 (DR9). SDSS has mapped over one
quarter of the sky in five photometric bands down to a
limiting magnitude of r ∼ 22.5. The photometric data
is reduced and from it are selected targets for followup
spectroscopy. The spectroscopic survey, known as the
Baryon Oscillation Spectroscopic Survey (BOSS), is de-
signed to obtain spectra for ∼ 1.5 million galaxies over a
10,000 square degree footprint.
In an effort to control the evolution of galaxy bias over

large redshift ranges the BOSS targets are selected in
such a way as to have approximately constant stellar
mass (CMASS). This is obtained using colour selections

A(k, μ) andB(k, μ) terms are the nonlinear 
corrections, and are expanded as power series of μ, 
including the powers up to μ6 for the A term and μ8 

for the B term.



Broadband Alcock-Paczynski test 
exploiting redshift distortions
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Building on the work of  TNS, they show the feasibility 
of constraining both growth and geometry with 
current data and future spectroscopic data.

The BAO in 2D forms a circle that remains unchanged 
due to variations in the galaxy bias and/or coherent 
motion. While it varies transversely and radially with 
respect to DA and H-1 respectively. 

This sensitivity to the orthogonal scales provides the 
extra information that enables galaxy clustering alone 
to place constraints on cosmology and the gravitational 
model.
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Alcock-Paczynski Effect

z1 z2

We measure RA, Dec and Redshift for each galaxy. 
However we must choose a cosmological model to convert 
these positions into a cartesian comoving coordinate 
system.

Even without a standard ruler, we can measure the 
clustering along and perpendicular to the line of sight 
and thus constrain the combination of  DA * H

DA(z)

1/H(z)

Observer
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ξ(rp, π) appears anisotropic 
if you assume the wrong 
cosmology; 

constrains the combination:
F(z) ≡ (1+z) DA(z) H(z)/c

However geometric 
distortions can be 
modeled exactly:

Alcock-Paczynski Effect
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Alcock-Paczynski Effect
Theoretically the  
geometric distortions of 
the AP effect can be 
modeled exactly:
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DA, H vary peak positions 
off the BAO ring. 
 
Growth rates Gb, G𝞱, shift 
peak position along BAO 
ring. But display different 
behavior in and small and 
large mu.

These different shifting 
allows us to separate and 
constrain the various 
observables.

10% variation 
in DA

10% variation 
in H

10% variation 
in Gb

10% variation 
in G𝞱



27

This work: 2D clustering on large scale

BOSS CMASS DR9

264,283 galaxies

target selection 
designed for 

“constant stellar 
mass” sample

0.43<z<0.7

limiting magnitude 
of r ∼ 22.5

Veff ∼ 2.2 Gpc3
0 50 100 15050100

150

0

50

100

150

50

100

3

FIG. 1. The measured 2D clustering correlation function ξ(σ, π) is plotted, adopting early universe priors from WMAP9 (left)
or Planck (right).

based on the passive galaxy template of [41]. The ma-
jority of CMASS galaxies are bright, central galaxies (in
the halo model framework) and are thus highly biased
(b ∼ 2) [42].
The CMASS sample [43] is defined by

z > 0.4 (3)

17.5 < icmod < 19.9

rmod − imod < 2.0

d⊥ > 0.55

ifib2 < 21.5

icmod < 19.86 + 1.6(d⊥ − 0.8)

ipsf − imod > 0.2 + 0.2(20.0− imod)

zpsf − zmod > 9.125− 0.46zmod ,

where the last two conditions provide a star-galaxy sep-
arator and d⊥ is defined as [44],

d⊥ = rmod − imod − (gmod − rmod)/8.0 . (4)

Each spectroscopically observed galaxy is weighted to
account for three distinct observational effects: redshift
failure, wfail; minimum variance, wFKP ; and angular
variation, wsys. These weights are described in more de-
tail in [45] and [46]. Firstly, galaxies that lack a redshift
due to fiber collisions or inadequate spectral information
are accounted for by reweighting the nearest galaxy by a
weight wfail = (1 +N), where N is the number of close
neighbours without an estimated redshift. Secondly, the
finite sampling of the density field leads to use of the min-
imum variance FKP prescription [47] where each galaxy

is assigned a weight according to

wi
FKP =

1

1 + ni(z)P0

, (5)

where ni(z) is the comoving number density of galaxy
population i at redshift z and one conventionally eval-
uates the weight at a constant power P0 ∼ P (k =
0.1 h/Mpc) ∼ 2 × 104 h−3 Mpc3, as in [45]. (But see
Appendix A.)
The third weight corrects for angular variations in com-

pleteness and systematics related to the angular varia-
tions in stellar density that make detection of galaxies
harder in over-crowded regions of the sky [46]. The total
weight for each galaxy is then the product of these three
weights, wtotal = wfailwFKPwsys. The random catalog
points are also weighted but they only include the mini-
mum variance FKP weight.
The CMASS galaxy sample is distributed over the

range 0.43 < z < 0.7, with an effective redshift

zeff =

∑Ngal

i wFKP,i zi
∑Ngal

i wFKP,i

, (6)

giving the value zeff = 0.57. The effective volume

Veff =
∑

(

n(zi)P0

1 + n(zi)P0

)2

∆V (zi) , (7)

where ∆V (z) is the volume of a shell at redshift z, is
Veff ∼ 2.2Gpc3.
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FIG. 4. The 68% and 95% confidence contours from the galaxy clustering data are plotted in the DA −H−1 plane, with the
best fit denoted by the large X. The values predicted from the CMB within LCDM cosmology are shown by the blue square.
The left panel uses the WMAP9 early universe prior on the power spectrum shape, while the right panel uses the Planck prior.
Overlaid are theory curves giving the relation between the two cosmological quantities within certain cosmologies; note that
all standard cosmologies lie in a restricted band. In addition to LCDM (black solid), we show wCDM with w = −0.8 (blue) or
w = −1.2 (magenta), and their generalizations to include spatial curvature (dotted). Each curve covers the range of Ωm = 0.2
at their upper ends to Ωm = 0.35 at their lower ends, with large dots showing the Ωm = 0.3 case.

the Planck LCDM concordance model. They are derived
using the fiducial (DA, H−1, GΘ), and best fit (Gb,σp).
The right panel of Fig. 2 shows strong agreement between
the derived best fit model and the theoretical Planck
LCDM concordance model.
For Fig. 3 using the WMAP9 early universe prior,

while the estimated 2D BAO ring agrees approximately
with the measured 2D BAO ring, peak points along the
ring do not well match to each other. The dashed con-
tours here represent ξ(σ,π) of the WMAP9 LCDM con-
cordance model. Unlike the Planck case, the measured
peak points shift toward the pivot point for the outer con-
tour, less so for the inner contours. As discussed above,
this is a signature of an increased velocity growth func-
tion; we expect the measured GΘ to be higher than fidu-
cial in this case.

C. The measured distances and growth functions

We present the results for the measured distances and
growth functions in Table I. Our baseline value of σcut =
40 h−1Mpc is used throughout this section.
The angular diameter distance DA, related to trans-

verse separations, is measured to be consistent with the
LCDM predictions. Most uncertainties of anisotropic

Parameters Fiducial values Measurements
With WMAP9 prior

DA (h−1 Mpc) 946.0 916.2+27.2
−25.4

H−1 (h−1 Mpc) 2241.5 2163.1+102.0
−85.8

Gb − 1.07+0.07
−0.09

GΘ 0.44 0.51+0.09
−0.08

σp (h
−1 Mpc) − 1.0+4.6

Parameters Fiducial values Measurements
With Planck prior

DA (h−1 Mpc) 932.6 939.7+26.7
−32.6

H−1 (h−1 Mpc) 2177.5 2120.5+82.3
−100.6

Gb − 1.11+0.07
−0.10

GΘ 0.46 0.47+0.10
−0.07

σp (h−1 Mpc) − 1.2+4.0

TABLE I. We summarize the values predicted by the CMB
data and the values measured from the BOSS data of the
distance quantities DA and H−1 and the growth quantities
Gb and GΘ, as well as the velocity damping scale σp, with
68% confidence level errors. (The CMB data does not predict
values of the astrophysical parameters Gb and σp.)

distortions are relevant to the radial direction, and
it is expected that DA is not biased much. With
the Planck early universe prior, DA is measured to
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distortions are relevant to the radial direction, and
it is expected that DA is not biased much. With
the Planck early universe prior, DA is measured to
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Alcock-Paczynski Effect
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FIG. 2. The measured, best fit, and LCDM-predicted versions of ξ(σ,π) are plotted, using the Planck early universe prior.
The blue filled contours represent the measured ξ(σ,π), and the black unfilled contours represent the best fit ξ(σ,π) with two
different σcut. The left panel uses σcut = 20 h−1 Mpc in the fit, and the right panel uses σcut = 40 h−1 Mpc. The quarter rings
denote the 2D BAO ring, for the fit (solid) and Planck LCDM prediction (dotted).

where Gb and GΘ denote the growth functions of density
and peculiar velocity. We define here Gb = bGδm where
b is the standard linear bias parameter between galaxy
tracers and the underlying dark matter density. The ex-
pression of Dm(k) is available in [35], and assumed to be
given precisely by CMB experiments, such as WMAP9
and Planck experiments. We refer to this as an early
universe prior. We incorporate the uncertainty from the
CMB anisotropy data in the amplitude determination of
the initial spectra, A2

S , into the growth function GX , i.e.
GX = G∗

XAS/A∗
S where G∗

X is the intrinsic growth func-
tion.
The clustering correlation function ξ(σ,π) is measured

in comoving distances, while galaxy locations use angu-
lar coordinates and redshift in galaxy redshift surveys.
A fiducial cosmology is required for conversion into co-
moving space. We use the best fit LCDM universe to
WMAP9 or Planck. The observed anisotropy correlation
function using this model is transformed into true comov-
ing coordinates using the transverse and radial distances,
involving DA and H−1, respectively. The approximate
fiducial maps are created by rescaling the transverse and
radial distances, using

σfid =
Dfid

A

Dtrue
A

σtrue

πfid =
H−1 fid

H−1 true
πtrue , (14)

where “fid” and “true” denote the fiducial and true dis-
tances. Thus the theoretical ξ with potentially true DA

and H−1 is fitted to the observed ξfid using the rescaling
in the above equations.

Given the early universe prior on the power spectrum
shape, both distances and growth functions are measured
simultaneously to high precision [52]. This holds even
without assuming the FRW integral relation between
H−1 and DA. Thus we do not have to assume any par-
ticular cosmological model or restrict to zero curvature
or LCDM.

Finally, we introduce a parameter representing non–
linear contamination to the power spectra of the density
and velocity fields. Even on linear scales the damping
effect on the power spectrum amplitude caused by ran-
dom galaxy motions still remains. This is described by
the Gaussian model for the FoG effect in Eq. 1, with σp

a free parameter giving the velocity dispersion. How-
ever, the non–perturbative damping effects are not fully
understood, and the Gaussian model may be insuficient
on non–linear scales. We therefore do not use the mea-
sured ξ(σ,π) for bins in which this breakdown is likely.
Two cut–off’s are used: 1) scut represents the scales on
which non–linear description of ∆PXY is uncertain, and
2) σcut represents the scales on which Gaussian FoG func-
tional form may not be appropriate. These are set to
be scut = 50 h−1Mpc and σcut = 40 h−1Mpc (although
we also consider σcut = 20 h−1Mpc). This strategy was
tested and proved valid using simulations in our previous
work. We follow the same method as presented in Song,
Okumura and Taruya (2013) [23].

In summary, we have Gb and GΘ to describe growth

Fitting the improved TNS model we obtain these fits to the data.
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FIG. 3. As Fig. 2, but using WMAP9 instead of Planck.

functions, DA and H−1 to fit distance measures, and σp

to model the FoG effect. The form of the FoG is taken
to be Gaussian and the shape of the linear spectra is
assumed to be given as an early universe prior by CMB
experiments.

B. Cut–off scales and 2D BAO ring

First, we investigate the appropriate cut–off scales.
The scut is introduced due to the uncertainty of the re-
summed perturbation theory RegPT at smaller scales. It
is conservatively set to be scut = 50 h−1Mpc which al-
lows the perfect cross–correlation between density and
velocity fields. In addition σcut is used because the
improved ξ(σ,π) in Eq. 2 is not applicable at bins in
which the higher order terms of non–perturbative effect
are dominant along the line of sight. It was set to be
σcut = 20 h−1Mpc in [23], and reproduced the true val-
ues successfully. But we find that it may be too ambitious
for the actual DR9 CMASS catalogue.
When the broadband shape of spectra and the distance

measures are known, the 2D BAO ring is invariant to the
changes of the coherent galaxy bias and coherent motion
growth function. When Gb increases/decreases, the BAO
tip points coherently move counter–clockwise/clockwise.
When GΘ increases/decreases, the BAO tip points move
toward/away from the pivot point (equal radial and
transverse separation). If the correct distance model
is known, the tip points of BAO peaks form an invari-
ant ring regardless of galaxy bias and coherent motion.
The ratio between the observed transverse and radial dis-
tances varies with the assumed cosmology and, if the

shape of an object is a priori known, can provide a mea-
sure of HDA (AP test).

The outer measured ξ(σ,π) contours are too vague
to reveal detailed BAO peak structure, but those peak
points can define the measured 2D BAO ring. Fig-
ure 2 shows the 2D correlation function contours, and
the best fit 2D BAO rings. The left and right panels use
σcut = 20 h−1Mpc and 40 h−1Mpc, respectively. If the
correlation function model is accurate down to σcut =
20 h−1Mpc then the two rings should be consistent.
However, the 2D BAO ring using σcut = 20 h−1Mpc not
only disagrees with that using σcut = 40 h−1Mpc but
also from the measured circle.

Basically the small, nonlinear scales where the model
is imperfect are distorting the results at all scales.
This can be seen by looking at several inner con-
tours at small scales, those corresponding to ξ =
(0.2, 0.06, 0.016, 0.005). In the left panel the solid curves
attempt to fit tightly the small scale contours very close
to the line of sight, at the price of a poor fit to the large
scale, linear contours. By contrast, in the right panel
with σcut = 40 h−1Mpc the residual non–perturbative
effects are observed clearly in the inner contours, but the
linear contours are better behaved. This problem with
an overambitious use of small scales is seen as well in
Fig. 3 using the WMAP9 early universe prior instead.

Therefore we use more conservative bound at σcut =
40 h−1Mpc. We tested our final results using different
σcut at 20, 30, 40, and 50 h−1 Mpc and found they con-
verged for σcut ≥ 40 h−1Mpc. The effect on cosmology
of using a cut allowing more of the non–linear regime is
discussed in Sec. V.

The dashed contours in Fig. 2 represent the ξ(σ,π) of
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FIG. 4. The 68% and 95% confidence contours from the galaxy clustering data are plotted in the DA −H−1 plane, with the
best fit denoted by the large X. The values predicted from the CMB within LCDM cosmology are shown by the blue square.
The left panel uses the WMAP9 early universe prior on the power spectrum shape, while the right panel uses the Planck prior.
Overlaid are theory curves giving the relation between the two cosmological quantities within certain cosmologies; note that
all standard cosmologies lie in a restricted band. In addition to LCDM (black solid), we show wCDM with w = −0.8 (blue) or
w = −1.2 (magenta), and their generalizations to include spatial curvature (dotted). Each curve covers the range of Ωm = 0.2
at their upper ends to Ωm = 0.35 at their lower ends, with large dots showing the Ωm = 0.3 case.

the Planck LCDM concordance model. They are derived
using the fiducial (DA, H−1, GΘ), and best fit (Gb,σp).
The right panel of Fig. 2 shows strong agreement between
the derived best fit model and the theoretical Planck
LCDM concordance model.
For Fig. 3 using the WMAP9 early universe prior,

while the estimated 2D BAO ring agrees approximately
with the measured 2D BAO ring, peak points along the
ring do not well match to each other. The dashed con-
tours here represent ξ(σ,π) of the WMAP9 LCDM con-
cordance model. Unlike the Planck case, the measured
peak points shift toward the pivot point for the outer con-
tour, less so for the inner contours. As discussed above,
this is a signature of an increased velocity growth func-
tion; we expect the measured GΘ to be higher than fidu-
cial in this case.

C. The measured distances and growth functions

We present the results for the measured distances and
growth functions in Table I. Our baseline value of σcut =
40 h−1Mpc is used throughout this section.
The angular diameter distance DA, related to trans-

verse separations, is measured to be consistent with the
LCDM predictions. Most uncertainties of anisotropic

Parameters Fiducial values Measurements
With WMAP9 prior

DA (h−1 Mpc) 946.0 916.2+27.2
−25.4

H−1 (h−1 Mpc) 2241.5 2163.1+102.0
−85.8

Gb − 1.07+0.07
−0.09

GΘ 0.44 0.51+0.09
−0.08

σp (h
−1 Mpc) − 1.0+4.6

Parameters Fiducial values Measurements
With Planck prior

DA (h−1 Mpc) 932.6 939.7+26.7
−32.6

H−1 (h−1 Mpc) 2177.5 2120.5+82.3
−100.6

Gb − 1.11+0.07
−0.10

GΘ 0.46 0.47+0.10
−0.07

σp (h−1 Mpc) − 1.2+4.0

TABLE I. We summarize the values predicted by the CMB
data and the values measured from the BOSS data of the
distance quantities DA and H−1 and the growth quantities
Gb and GΘ, as well as the velocity damping scale σp, with
68% confidence level errors. (The CMB data does not predict
values of the astrophysical parameters Gb and σp.)

distortions are relevant to the radial direction, and
it is expected that DA is not biased much. With
the Planck early universe prior, DA is measured to

WMAP9 
early universe prior

PLANCK 
early universe prior
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FIG. 5. As Fig. 4 but for the Gθ −DA plane. Here the allowed cosmology band is wider (we do not plot the owCDM models).

be 939.7+26.7
−32.6 h

−1 Mpc, in excellent agreement with the
Planck LCDM best fit prediction. Using the WMAP9
early universe prior, the measured DA is 1 − σ from the
WMAP9 LCDM prediction.

The line of sight distance quantity H−1, related to ra-
dial separations, is also measured to be consistent with
LCDM predictions. For either the Planck or WMAP9
early universe priors the agreement is within 1 − σ.
Greater tension is seen if one uses σcut = 20 h−1Mpc,
which lowers the measured H−1.

As mentioned earlier, the growth functions influence
the location of peaks along the rings of power (see [23]
for illustrations). For the Planck early universe prior,
the best fit peak structure is nearly identical to that pre-
dicted by the Planck LCDM model. The measured co-
herent growth function has GΘ = 0.47+0.10

−0.07, while the
fiducial value is 0.46. This measurement can be con-
verted to a value at zeff = 0.57 of the standard parame-
ter fσ8 = 0.48, which is very close to the fiducial model
value of 0.47. When the WMAP9 early universe prior is
used, the measured GΘ becomes bigger than LCDM pre-
diction. Like the distance measurements, the measured
GΘ is offset by ∼ 1− σ.

Note that GΘ has a relatively large error, about
15 − 20%. This is partly caused by floating σp as a free
parameter. In the linear regime, when the first order
contribution of the Gaussian FoG function dominates,
this factor is nearly featureless and becomes significantly
degenerate with coherent growth function. Using more
non-linear scales (smaller σcut) would break this degen-
eracy, reducing the error contour but introducing bias;

we show this explicitly in Sec. V.
The galaxy bias is estimated from the Gb measure-

ment. The bias b is measured to be 1.9 and 1.8 for Planck
and WMAP9 respectively. Those values are consistent
with CMASS catalogues [49]. The velocity dispersion σp

indicates the level of the FoG effect. For both Planck
and WMAP9 cases, it is observed to be small, about
σp = 1 h−1Mpc, but with significant uncertainty.

V. TESTING COSMOLOGY

Our analysis approach has been model independent,
obtaining constraints on the distances DA and H−1 –
without even assuming a Friedmann integral relation be-
tween them – and on the velocity growth factor GΘ.
While we have so far compared the values individually to
the best fit LCDM predictions from the CMB, we should
also look at the joint probabilities. We can test for consis-
tency with the LCDM model by examining whether the
fixed relations between these quantities in LCDM, i.e. the
1D curves in the DA −H−1, DA − GΘ, and H−1 − GΘ

planes, all intersect the measured confidence contours.
Furthermore, we can generalize the test by allowing for
spatial curvature or non-Λ dark energy. For the growth
factor GΘ this comparison also allows a test of general
relativity since within this theory the distance quantities
(measuring the cosmic expansion) have a definite relation
to the growth quantity GΘ.
Figures 4, 5, 6 show the three planes of pairs of the

cosmological quantities and their joint measurement con-
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FIG. 7. Using small scale information, σcut = 20h−1 Mpc (in
dark orange) rather than our standard σcut = 40 h−1 Mpc (in
light grey), shifts the results into a region corresponding to no
reasonable cosmology within general relativity. Here we show
the GΘ −H−1 plane, with the Planck early universe prior, as
an example.

clustering analysis. Using an early universe prior from
CMB experiments, from the clustering correlation func-
tion we can extract the angular diameter distance DA,
Hubble scale H−1, and growth rate GΘ at the effective
survey redshift zeff = 0.57. These are found to be consis-
tent with LCDM, and by comparing expansion of cosmic
distances with growth of cosmic structure we also test
general relativity, again finding consistency.

Two cautions are relevant to such an analysis, one im-
portant already to current data and one entering for fu-
ture, high precision surveys. Use of small scale measure-
ments of the correlation functions, which can be signifi-
cantly contaminated by non–linear gravitational physics,
is fraught with peril. We find this can distort the cos-
mological results, moving them wholly outside the range
of standard cosmology and give a spurious signature of
breakdown of general relativity. Insidiously, the extra
data also helps shrink the contours, so the cosmological
quantities appear well determined.

We employ the improved redshift distortion model of
[36], but this is still limited in accuracy to scales where
higher order terms of the FoG effect are negligible. To
prevent bias we cut most of the measured ξ(σ,π) along
the line of sight out from this analysis. This conserva-
tive treatment is well defined in the full 2D anisotropy
analysis but could be problematic when using a multipole
expansion instead. It will be interesting to compare our

conservative results to those from a multipole analysis.
Another aspect is that we find that the results from

the real, observed, data are more contaminated with
the small scale velocity and non-linear effects than those
from the mock catalogues. In the simulations, σcut =
20 h−1Mpc is acceptable to measure observables using
the improved perturbation theory model. However, in
the real dataset, the cut–off scale must be extended to
σcut = 40 hMpc−1 to obtain convergent results (insensi-
tive to the exact choice of σcut). This can also be seen
by comparing the 2D BAO ring with the measured BAO
peak structure.
The second caution comes from the interpretation de-

pendence of the effective redshift zeff . Since it involves
the galaxy power spectrum (or correlation function) it is
intrinsically anisotropic and will take on different values
depending on what quantity is being measured. That is,
one formally has DA(zDeff), H

−1(zHeff), etc. We estimate
the magnitude of this effect and show that it could be-
come relevant for next generation redshift surveys such
as DESI or Euclid.
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Appendix A: Effective redshift variation

The transverse and radial distances extracted from the
galaxy data do not in fact have the same zeff , as the opti-
mal weighting depends on the strength of clustering [47],
enhanced along the line of sight by redshift space distor-
tions [e.g. the usual Kaiser factor (b + fµ2)2]. This is
most familiar perhaps in the power spectrum, where the
weighting 1/[1 + n(z)P (k, µ, z)] shows that the higher
power along the line of sight further deweights lower red-
shift galaxies where clustering has grown.
This is a small effect, negligible for previous red-

shift surveys, but will become increasingly important for
larger, more precise surveys. Figure 8 calculates zeff as a
function of k and µ, using the power spectrum computed
from mock simulations relevant to BOSS [54]. Since most
of the information for determining H−1 comes from ra-
dial modes µ ≈ 1 and for determining DA comes from

σcut=20 h−1Mpc 

σcut=
40 h−1Mpc 

Using data to smaller, non-linear scales, 
we do find deviations. In particular, GΘ 
rapidly becomes slightly 
underestimated, with values of 0.42 for a 
cutoff at σcut = 30 h−1 Mpc 
and 0.34 for σcut = 20 h−1 Mpc.
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FIG. 2. The measured, best fit, and LCDM-predicted versions of ξ(σ,π) are plotted, using the Planck early universe prior.
The blue filled contours represent the measured ξ(σ,π), and the black unfilled contours represent the best fit ξ(σ,π) with two
different σcut. The left panel uses σcut = 20 h−1 Mpc in the fit, and the right panel uses σcut = 40 h−1 Mpc. The quarter rings
denote the 2D BAO ring, for the fit (solid) and Planck LCDM prediction (dotted).

where Gb and GΘ denote the growth functions of density
and peculiar velocity. We define here Gb = bGδm where
b is the standard linear bias parameter between galaxy
tracers and the underlying dark matter density. The ex-
pression of Dm(k) is available in [35], and assumed to be
given precisely by CMB experiments, such as WMAP9
and Planck experiments. We refer to this as an early
universe prior. We incorporate the uncertainty from the
CMB anisotropy data in the amplitude determination of
the initial spectra, A2

S , into the growth function GX , i.e.
GX = G∗

XAS/A∗
S where G∗

X is the intrinsic growth func-
tion.
The clustering correlation function ξ(σ,π) is measured

in comoving distances, while galaxy locations use angu-
lar coordinates and redshift in galaxy redshift surveys.
A fiducial cosmology is required for conversion into co-
moving space. We use the best fit LCDM universe to
WMAP9 or Planck. The observed anisotropy correlation
function using this model is transformed into true comov-
ing coordinates using the transverse and radial distances,
involving DA and H−1, respectively. The approximate
fiducial maps are created by rescaling the transverse and
radial distances, using

σfid =
Dfid

A

Dtrue
A

σtrue

πfid =
H−1 fid

H−1 true
πtrue , (14)

where “fid” and “true” denote the fiducial and true dis-
tances. Thus the theoretical ξ with potentially true DA

and H−1 is fitted to the observed ξfid using the rescaling
in the above equations.

Given the early universe prior on the power spectrum
shape, both distances and growth functions are measured
simultaneously to high precision [52]. This holds even
without assuming the FRW integral relation between
H−1 and DA. Thus we do not have to assume any par-
ticular cosmological model or restrict to zero curvature
or LCDM.

Finally, we introduce a parameter representing non–
linear contamination to the power spectra of the density
and velocity fields. Even on linear scales the damping
effect on the power spectrum amplitude caused by ran-
dom galaxy motions still remains. This is described by
the Gaussian model for the FoG effect in Eq. 1, with σp

a free parameter giving the velocity dispersion. How-
ever, the non–perturbative damping effects are not fully
understood, and the Gaussian model may be insuficient
on non–linear scales. We therefore do not use the mea-
sured ξ(σ,π) for bins in which this breakdown is likely.
Two cut–off’s are used: 1) scut represents the scales on
which non–linear description of ∆PXY is uncertain, and
2) σcut represents the scales on which Gaussian FoG func-
tional form may not be appropriate. These are set to
be scut = 50 h−1Mpc and σcut = 40 h−1Mpc (although
we also consider σcut = 20 h−1Mpc). This strategy was
tested and proved valid using simulations in our previous
work. We follow the same method as presented in Song,
Okumura and Taruya (2013) [23].

In summary, we have Gb and GΘ to describe growth

σcut=20Mpc σcut=40Mpc



7

FIG. 4. The 68% and 95% confidence contours from the galaxy clustering data are plotted in the DA −H−1 plane, with the
best fit denoted by the large X. The values predicted from the CMB within LCDM cosmology are shown by the blue square.
The left panel uses the WMAP9 early universe prior on the power spectrum shape, while the right panel uses the Planck prior.
Overlaid are theory curves giving the relation between the two cosmological quantities within certain cosmologies; note that
all standard cosmologies lie in a restricted band. In addition to LCDM (black solid), we show wCDM with w = −0.8 (blue) or
w = −1.2 (magenta), and their generalizations to include spatial curvature (dotted). Each curve covers the range of Ωm = 0.2
at their upper ends to Ωm = 0.35 at their lower ends, with large dots showing the Ωm = 0.3 case.

the Planck LCDM concordance model. They are derived
using the fiducial (DA, H−1, GΘ), and best fit (Gb,σp).
The right panel of Fig. 2 shows strong agreement between
the derived best fit model and the theoretical Planck
LCDM concordance model.
For Fig. 3 using the WMAP9 early universe prior,

while the estimated 2D BAO ring agrees approximately
with the measured 2D BAO ring, peak points along the
ring do not well match to each other. The dashed con-
tours here represent ξ(σ,π) of the WMAP9 LCDM con-
cordance model. Unlike the Planck case, the measured
peak points shift toward the pivot point for the outer con-
tour, less so for the inner contours. As discussed above,
this is a signature of an increased velocity growth func-
tion; we expect the measured GΘ to be higher than fidu-
cial in this case.

C. The measured distances and growth functions

We present the results for the measured distances and
growth functions in Table I. Our baseline value of σcut =
40 h−1Mpc is used throughout this section.
The angular diameter distance DA, related to trans-

verse separations, is measured to be consistent with the
LCDM predictions. Most uncertainties of anisotropic

Parameters Fiducial values Measurements
With WMAP9 prior

DA (h−1 Mpc) 946.0 916.2+27.2
−25.4

H−1 (h−1 Mpc) 2241.5 2163.1+102.0
−85.8

Gb − 1.07+0.07
−0.09

GΘ 0.44 0.51+0.09
−0.08

σp (h
−1 Mpc) − 1.0+4.6

Parameters Fiducial values Measurements
With Planck prior

DA (h−1 Mpc) 932.6 939.7+26.7
−32.6

H−1 (h−1 Mpc) 2177.5 2120.5+82.3
−100.6

Gb − 1.11+0.07
−0.10

GΘ 0.46 0.47+0.10
−0.07

σp (h−1 Mpc) − 1.2+4.0

TABLE I. We summarize the values predicted by the CMB
data and the values measured from the BOSS data of the
distance quantities DA and H−1 and the growth quantities
Gb and GΘ, as well as the velocity damping scale σp, with
68% confidence level errors. (The CMB data does not predict
values of the astrophysical parameters Gb and σp.)

distortions are relevant to the radial direction, and
it is expected that DA is not biased much. With
the Planck early universe prior, DA is measured to
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FIG. 5. The 2D joint likelihood contours at 68% and 95% CL measured forDA, H
�1 and G⇥ are shown, using scut = 50hMpc�1

and �cut = 40hMpc�1. The fiducial values in the Planck LCDM concordance model are shown by x’s (see Table II).

The first panel provides evidence for the FRW consis-
tency relation of the background quantities of the dis-
tance and expansion rate. The second panel involves
measurements of the perturbed quantities, from the den-
sity and velocity fields. As mentioned, G

b

is consistent
with expectations for galaxy bias. The measured G⇥

can be converted to f�8 = 0.43 ± 0.09, with the Planck
LCDM model predicting f�8 = 0.48, again within 68%
CL. (Note this would not hold if we naively included
smaller scales where nonlinear modelling is not robust.)

The third and fourth panels, showing that the joint
likelihoods for the background and growth quantities are
consistent with Planck LCDM, can be thought of as a
(weak, model independent) test of the general relativity
criterion. That the fourth panel, showing the G⇥–H�1

likelihood, is consistent with Planck LCDM (with mini-
mal neutrino mass), also disfavors a larger neutrino mass
and its accompanying suppression of growth. If one as-
sumed that the background cosmology is truly the Planck
LCDM model, then the growth measurement could be

33
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FIG. 4. The measured values of DA, H
�1 and G⇥ are shown

for various �cut from 30hMpc�1 and 60hMpc�1. The val-
ues have converged for �cut � 40hMpc�1, but inclusion of
smaller scales biases the answers by ⇠ 1�. The dotted lines,
representing the Planck LCDM predictions, are shown purely
for reference; the important aspect is convergence (not to any
particular value).

below, and of North vs South maps in the next section.
For the density and velocity growth factors the in-

formation comes from multiple scales, and especially
from the redshift space anisotropy. While the signal–to–
noise of the inner (higher amplitude) contours of clus-
tering is higher, the use of RegPT to second order is
insu�cient for accurate modelling of ⇠(�,⇡) at scales
s < 50hMpc�1. In particular, the cross–spectrum be-
tween � and ⇥ is not perfectly cross–correlated. When
the cut–o↵ s < 50hMpc�1 is applied, the constraints on
G

b

and G⇥ from their distinctive amplification of the in-
ner contours [40] become weaker, but more robust as we
now see.

At small scales, if the non–perturbative e↵ect of FoG
is underestimated, then the residual squeezing can be
misinterpreted as a smallerG⇥. We expect the FoG e↵ect
to be increasingly important at smaller scales, and so
these run increasing risk of misestimation. To test this, in
Fig. 4 we show the cosmology results as we vary �cut from
30hMpc�1 to 60hMpc�1. The strongest e↵ect is on
G⇥, and indeed inclusion of small scales noticeably lowers
the measured G⇥. However, for all �cut � 40hMpc�1

the results have converged and the measured values are
insensitive to the exact value of �cut. This indicates that
the approximation for treating FoG should not be trusted
for � < 40hMpc�1, while above this scale our approach
is robust. This argument holds as well for D

A

and H�1,
though less extremely. Considerable caution should be
applied to the use of the clustering data on small scales.

The outer contours provide another indicative behav-

ior for G⇥. When G⇥ varies, the location of peaks on
2D BAO circle moves di↵erently from the variation of
G

b

[13]. The peak points run away from the pivot point
(roughly where � ⇡ ⇡) as G⇥ decreases, and move toward
it for increasing G⇥. From Fig. 3 we see that around
the BAO ring the fourth and sixth contours recede away
from the Planck LCDM prediction, while the fifth con-
tour, which lies close to the pivot point, has not moved.
This implies the measured G⇥ is smaller than the Planck
LCDM prediction and indeed we find G⇥ = 0.41±0.09 in
comparison with 0.46 predicted by Planck LCDM predic-
tion. This is still within 68% CL however (note though
that using a lower �cut moves G⇥ to even smaller values).
The quantity G

b

represents the combination of density
field and linear bias. As no cosmological model is as-
sumed, the two are not separable. As shown in Table II,
G

b

is measured to be 1.15 ± 0.08. If the Planck LCDM
model is true, then the linear bias at z = 0.57 can be
estimated to be b = 2.0 with 7% fractional error (recall
that G

b

= bD). This is consistent with what we observe
from the simulation.
The velocity dispersion parameter �

p

for FoG is mea-
sured to be 6.2+3.6

�3.3 h
�1 Mpc. The FoG e↵ect is at first

order degenerate with G⇥; this causes weak constraints
on both �

p

and G⇥.

B. Testing the cosmological framework

Our model independent analysis allows several consis-
tency tests.

1. In a Friedmann-Robertson-Walker (FRW) cosmol-
ogy, D

A

is formed from an integral over H�1.

2. Within general relativity and FRW, the growth rate
G⇥ and expansion rate H�1 are tied together.

3. Neutrino mass suppresses growth, so a measured
consistency with Planck LCDM (i.e. minimal neu-
trino mass) disfavors higher neutrino mass (or re-
quires a conspiracy with enhanced growth from
modified gravity – but this would show up in the
previous consistency test).

We therefore study the joint probability distribution
between the measured cosmological quantities, e.g. the
two dimensional likelihood contours of G⇥ vs H�1. All
such contours are marginalized over the remaining quan-
tities.

In Fig. 5 we present two dimensional cosmological pa-
rameter contours in four di↵erent combinations. The x’s
represent the best values of Planck LCDM models; we see
that our model independent analysis agrees within the
68% confidence level with the cosmology that assumed
LCDM, general relativity, and minimal neutrino mass.
This holds for all the measured distances and growth
functions.

7

FIG. 6. The measured DA, H
�1 and G⇥ are presented from

the top to the bottom panels. Each one shows the results from
the combined, northern, and southern skies, from left to right.
The dotted lines represent the Planck LCDM predictions.

converted to an estimate of the gravitational growth in-
dex � [41] or a sum of neutrino masses

P
m

⌫

. However
for both of these the uncertainty on G⇥ is multiplied by
a large prefactor so the constraints are weak.

C. Comparison of North vs South

Another interesting check involves a comparison of the
estimated cosmological quantities using only the north-
ern or southern hemisphere sky. The median RA and
Dec of each patch is (185, 25) and (2, 10) respectively (see
Fig. 1), so the centers of these two disjoint sky patches
are separated by 145 degrees on the sky. The e↵ective
volume of the North is 4.5 Gpc3 and that of the South is
1.5 Gpc3.

Table II breaks down the cosmological results by hemi-
sphere. All quantities are consistent within 68% CL; nev-
ertheless, there are some interesting patterns worthwhile
keeping an eye on as the data improves and the error bars
shrink.

In the top and middle panels of Fig. 6 we present the
measured D

A

and H�1 for North and South separately,
and the full survey combination. North and South agree
with each other and with Planck LCDM predictions. The
detailed numbers are shown in Table II. Note that the
median measured H�1 from the combined map does not
lie between the North and South measured values; this
occurs due to the non-Gaussian probability distribution
for the measured H�1 in the South – the mode value is
2116 h�1 Mpc.

For the measured coherent motion G⇥ in the bottom
panel, the North is somewhat inconsistent (⇠ 1.5�) with

the Planck LCDM prediction. From Table II, in the
North G⇥ = 0.34+0.08

�0.08 and in the South G⇥ = 0.54+0.16
�0.17,

while the LCDM fiducial has G⇥ = 0.46. The central val-
ues of North and South are noticeably di↵erent, though
due to the large uncertainty from the small e↵ective vol-
ume in the South this cannot be said to be statistically
significant.
One might speculate about North-South anisotropy

but this is disfavored due to the consistency of the mea-
sured H�1 values. We have also checked that ze↵ is
consistent between North and South, at the 0.05% level.
Another possibility is inhomogeneity at the perturbation
level, for example an anisotropic stress [42, 43]. With a
quadrupole dependence, this would not have an e↵ect if
the North and South areas were 180� apart, but could
have a component as they are separated by 145�. Also
note that the measured velocity dispersion �

p

is di↵erent
in North and South, which could support this. Alter-
nately, the covariance between �

p

and G⇥ is such that
high �

p

can damp the excess velocity growth of high G⇥,
so that these (and the low �

p

, low G⇥ case for the North)
lie along the degeneracy direction with LCDM.

V. CONCLUSIONS

We have carried out an analysis within a framework
independent of the cosmological model, i.e. the specific
energy density components such as dark energy or cur-
vature. This uses the BOSS DR11 dataset that measures
galaxy clustering over the largest volume yet surveyed
with an e↵ective redshift of z = 0.57. We measure the
angular distance D

A

, expansion rate H�1 (from the ra-
dial distance information), and velocity growth rate G⇥;
all are consistent with the Planck LCDM prediction.
These are multiple, model independent tests of LCDM

since the implications of each parameter is di↵erent. The
measured D

A

is insensitive to uncertainties from contam-
ination along the line of sight, but can be a↵ected by the
assumption of coherent (scale-independent) galaxy bias
on the scales used, due to the degeneracy between D

A

and G
b

. The value of the galaxy bias b we derive is also
consistent with other measurements. For accurate mea-
surement of H�1, the radial dependence of ⇠(�,⇡) should
be modelled robustly.
For G⇥, measured coherent motions are degenerate

with the FoG e↵ect which is problematic to model. If
there is residual contamination from inaccurate mod-
elling of the FoG e↵ect, the coherent motions and hence
velocity growth rate G⇥ or f�8 are underestimated.
Since the theoretical model calibrated from simulations
becomes increasingly inaccurate on small scales, we care-
fully examine the dependence of the results on the small
scale cuto↵ in the measurements used. We find that con-
vergence is achieved for �cut � 40 hMpc�1, with bias
arising if smaller scales are included – an important cau-
tion. Our measurement corresponds to f�8 = 0.43±0.09,
with the Planck LCDM prediction of f�8 = 0.48.

Combined/North/South 
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Clean Alcock-Paczynski Measure
Theoretically the  
geometric distortions of 
the AP effect can be 
modeled exactly:

35

DA, H vary peak positions 
off the BAO ring. 
 

10% variation 
in DA

10% variation 
in H

We want to avoid fitting the full shape of the 
anisotropic correlation function, as it depends on 
unknown systematic and physics, like scale 
dependent bias, etc. 

A cleaner method would be to just measure the 
shape of the BAO ring.

We can do this by looking at many thin wedges in 
this 2D projection, i.e. many directionally 
constrained 1-D correlation functions.
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Anisotropic BAO Peaks

2 Cristiano G. Sabiu, Yong-Seon Song

te r, re sp e cti v e ly . I n th e p a rti cu la r ca se of a fl a t u n i v e rse w i th
con sta n t d a rk e n e rg y E oS , th e y ta k e th e f orm s of

H(z) = H
0

q
⌦ma�3 + (1 � ⌦m)a�3(1+w),

DA(z) =
1

1 + z
r(z) =

1
1 + z

Z z

0

dz0

H(z0)
, (2 )

w h e re a = 1 /(1 + z) i s th e cosm i csca le f a ctor, H
0

i s th e
p re se n t v a lu e of H u b b le p a ra m e te r a n d r(z) i s th e com ov i n g
d i sta n ce .

T h e ob se rv e d d i sta n ce b e tw e e n tw og a la x i e s r d e fi n e d
a ssu m i n g a fi d u ci a lor re f e re n ce cosm olog i ca lm od e l, a n d th e
ob se rv e d cosi n e of th e a n g le th e p a i r m a k e s w i th re sp e ct to
th e los µ a re g i v e n b y

r2 = r2|| + r2? ; µ =
r||
r

(3 )

w h e re r|| i s th e los se p a ra ti on a n d r? i s th e tra n sv e rse se p -
a ra ti on . T h e e sti m a te of th e se se p a ra ti on s i s d e p e n d e n t on
th e a ssu m e d cosm olog y m od e l.

W e e sti m a te th e 2 - p oi n t corre la ti on f u n cti on (2 P C F )
i n re sh i f t- sp a ce a n d i n th e a n i sotrop i cs, µ - d e com p osi ti on .
T h e corre la ti on f u n cti on s a re ca lcu la te d u si n g th e “ L a n d y -
S z a la y ” e sti m a tor,

⇠(s, µ) =
DD(s, µ)� 2 DR(s, µ) + RR(s, µ)

RR(s, µ)
, (4 )

w h e re DD i s th e n u m b e r of g a la x y – g a la x y p a i rs, DR th e
n u m b e r of g a la x y - ra n d om p a i rs, a n d RR i s th e n u m b e r of
ra n d om – ra n d om p a i rs, a llse p a ra te d b y a d i sta n ce s ± �s
a n d a n g le µ±�µ . T h e p a i r cou n ts a re n orm a li se d si n ce w e
u se 2 0 ti m e s a s m a n y ra n d om s a n d d a ta p oi n t tore d u ce sh ot
n oi se con tri b u ti on s toth e corre la ti on e sti m a ti on .

W e ca n m od e lth e corre la ti on f u n cti on w e llu si n g ,

⇠µ(s)⇥ s2 = A.s2 + B.s + Ee�(s�D)

2/C + F, (5 )

w h i ch i s j u st a q u a d ra ti cf u n cti on p lu s a g a u ssi a n (f or th e
B A O p e a k ). I n ou r w ork th e f ocu s w i llb e on con stra i n i n g
th e sca le p a ra m e te r, D , a s a f u n cti on of th e a n i sotrop y a n g le ,
µ .

I n F i g . 1 w e sh ow th e 2 P C F , ⇠(s) f or v a ri ou s µ v a lu e s. I n
a llµ - d i re cti on s th e B A O f e a tu re i s cle a rly se e n . T h e se corre -
la ti on f u n cti on s a re th e a v e ra g e of 1 6 2 L P T m ock s C M A S S
sa m p le s i n th e re d sh i f t ra n g e 0 . 4 3 < z < 0 . 7 .

I n F i g . 2 w e sh ow th e v a lu e s of D ob ta i n e d f rom fi tti n g
th e m od e lof E q 5 toth e m e a su re d ⇠ cu rv e s of F i g . 1 . T h e
fi tti n g w a s d on e u si n g a 2 0 , 0 0 0 ch a i n m cm c. T h e fi tti n g w a s
d on e of th e ra n g e 7 0 < s [ Mpc/h ] < 1 5 0 , sa m p le d i n 1 M p c/ h
b i n s. T h e e rrors on th e m e a su re m e n ts w e re a ssu m e d tob e
sm a ll, 1 % . T h e ob ta i n s e rrors a re d u e toa com b i n a ti on of
th e a ssu m e d m e a su re m e n t e rrors a n d th e te n si on i n f rom th e
m od e lw i th th e d a ta . T h e stra i g h t li n e p lu s g a u ssi a n m od e l
m a y b e tooi n fl e x i b le toob ta i n s th e d e si re d fi t th u s a llow i n g
d e g e n e ra ci e s tow i d e n th e con stra i n ts on th e p a ra m e te rs.

T h e g e n e ra le x p re ssi on f or a n e lli p se i n p ola r coord i -
n a te s i s,

r(✓) =
abp

(acos ✓)2 + (b si n ✓)2
(6 )

w h e re a a n d b a re th e se m i - m a j or a n d se m i - m i n or a x e s re -
sp e cti v e ly .

I f w e n ow fi t th e a b ov e e lli p ti ce q u a ti on toth e d a ta
p oi n ts w i th e rrors a s se e i n F i g . 2 w e ca n ob ta i n con stra i n ts
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Figure 1. We plot ⇠(s) for various values of µ. The black squares

from top to bottom correspond to µ=0.9167, 0.7500, 0.5833,

0.4167, 0.2500, 0.0833, respectively. The black dashed line cor-

responds to eq.5.
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Figure 2. The obtained values of the scaling parameter, D, as a

function of los angle µ. The values and errorbars were obtained

from an mcmc analysis.

on th e v a lu e s of a a n d b w h i ch re p re se n t ou r sca li n g p a ra m -
e te r a lon g th e li n e of si g h t, D// a n d a cross th e li n e of si g h t,
D? . T h e 1 - a n d 2 - si g m a con stra i n ts a re re p re se n te d i n F i g . 3 .

3 BAO PEAK STRUCTURE SENSITIVITIES

T h e B A O ri n g w i llre m a i n u n ch a n g e d d u e toth e ov e ra lla m -
p li tu d e sh i f t i n d u ce d b y v a ri a ti on s i n g a la x y b i a s. H ow e v e r
i t sh ou ld b e ch e ck e d h ow th e p e a k stru ctu re i s e ↵ e cte d w h e n
w e con si d e r fi n g e r- of - g od d i storti on s, n on - li n e a r g row th a n d ,
v a ri a ti on s i n th e ov e ra llsh a p e i n d u ce d b y u n k n ow n h a n d
of cou rse th e A P e ↵ e ct. W e w i sh toi sola te th e la tte r e f -
f e ct si n ce i t e n cod e s d i sta n ce i n f orm a ti on w h i ch i n tu rn ca n
i n f orm i s of th e e x p a n si on h i story .

c� 0000 RAS, MNRAS 000, 000–000

A simple function to 
approximate the shape of 
the correlation function
We use a quadratic plus a 
gaussian, fitted over the 
range 80<r<180 Mpc

We care only about 
locating the BAO peak 
position. The centre of the 
gaussian is controlled by D.

2 Cristiano G. Sabiu, Yong-Seon Song

t e r , r e sp e c t i v e l y . I n t h e p a r t i c u l a r c a se o f a fl a t u n i v e r se w i t h
c o n st a n t d a r k e n e r g y E o S , t h e y t a k e t h e f o r m so f

H ( z ) = H
0

q
⌦m a �3 + ( 1 � ⌦m ) a �3(1+w) ,

D A ( z ) =
1

1 + z
r( z ) =

1
1 + z

Z z

0

d z 0

H ( z 0 )
, ( 2)

w h e r e a = 1 / ( 1 + z ) i st h e c o sm i c sc a l e f a c t o r , H
0

i st h e
p r e se n t v a l u e o f H u b b l e p a r a m e t e r a n d r( z ) i st h e c o m o v i n g
d i st a n c e .

T h e o b se r v e d d i st a n c e b e t w e e n t w o g a l a x i e sr d e fi n e d
a ssu m i n g a fi d u c i a l o r r e f e r e n c e c o sm o l o g i c a l m o d e l , a n d t h e
o b se r v e d c o si n e o f t h e a n g l e t h e p a i r m a k e sw i t h r e sp e c t t o
t h e l o sµ a r e g i v e n b y

r2 = r2|| + r2? ; µ =
r||
r

( 3 )

w h e r e r|| i st h e l o sse p a r a t i o n a n d r? i st h e t r a n sv e r se se p -
a r a t i o n . T h e e st i m a t e o f t h e se se p a r a t i o n si sd e p e n d e n t o n
t h e a ssu m e d c o sm o l o g y m o d e l .

W e e st i m a t e t h e 2- p o i n t c o r r e l a t i o n f u n c t i o n ( 2P C F )
i n r e sh i f t - sp a c e a n d i n t h e a n i so t r o p i c s , µ - d e c o m p o si t i o n .
T h e c o r r e l a t i o n f u n c t i o n sa r e c a l c u l a t e d u si n g t h e “ L a n d y -
S z a l a y ” e st i m a t o r ,

⇠ ( s , µ ) =
D D ( s , µ ) � 2D R ( s , µ ) + RR ( s , µ )

RR ( s , µ )
, ( 4 )

w h e r e D D i st h e n u m b e r o f g a l a x y – g a l a x y p a i r s, D R t h e
n u m b e r o f g a l a x y - r a n d o m p a i r s, a n d RR i st h e n u m b e r o f
r a n d o m – r a n d o m p a i r s, a l l se p a r a t e d b y a d i st a n c e s ± � s
a n d a n g l e µ ±� µ . T h e p a i r c o u n t sa r e n o r m a l i se d si n c e w e
u se 20 t i m e sa sm a n y r a n d o m sa n d d a t a p o i n t t o r e d u c e sh o t
n o i se c o n t r i b u t i o n st o t h e c o r r e l a t i o n e st i m a t i o n .

W e c a n m o d e l t h e c o r r e l a t i o n f u n c t i o n w e l l u si n g ,

⇠µ ( s ) ⇥ s 2 = A . s 2 + B . s + E e �(s�D)

2/C + F , ( 5 )

w h i c h i sj u st a q u a d r a t i c f u n c t i o n p l u sa g a u ssi a n ( f o r t h e
B A O p e a k ) . I n o u r w o r k t h e f o c u sw i l l b e o n c o n st r a i n i n g
t h e sc a l e p a r a m e t e r , D, a sa f u n c t i o n o f t h e a n i so t r o p y a n g l e ,
µ .

I n F i g . 1 w e sh o w t h e 2P C F , ⇠ ( s ) f o r v a r i o u sµ v a l u e s. I n
a l l µ - d i r e c t i o n st h e B A O f e a t u r e i sc l e a r l y se e n . T h e se c o r r e -
l a t i o n f u n c t i o n sa r e t h e a v e r a g e o f 1 6 2L P T m o c k sC M A S S
sa m p l e si n t h e r e d sh i f t r a n g e 0 . 4 3 < z < 0 . 7 .

I n F i g . 2 w e sh o w t h e v a l u e so f D o b t a i n e d f r o m fi t t i n g
t h e m o d e l o f E q 5 t o t h e m e a su r e d ⇠ c u r v e so f F i g . 1 . T h e
fi t t i n g w a sd o n e u si n g a 20 , 0 0 0 c h a i n m c m c . T h e fi t t i n g w a s
d o n e o f t h e r a n g e 7 0 < s [ M p c / h ] < 1 5 0 , sa m p l e d i n 1 M p c / h
b i n s. T h e e r r o r so n t h e m e a su r e m e n t sw e r e a ssu m e d t o b e
sm a l l , 1 % . T h e o b t a i n se r r o r sa r e d u e t o a c o m b i n a t i o n o f
t h e a ssu m e d m e a su r e m e n t e r r o r sa n d t h e t e n si o n i n f r o m t h e
m o d e l w i t h t h e d a t a . T h e st r a i g h t l i n e p l u sg a u ssi a n m o d e l
m a y b e t o o i n fl e x i b l e t o o b t a i n st h e d e si r e d fi t t h u sa l l o w i n g
d e g e n e r a c i e st o w i d e n t h e c o n st r a i n t so n t h e p a r a m e t e r s.

T h e g e n e r a l e x p r e ssi o n f o r a n e l l i p se i n p o l a r c o o r d i -
n a t e si s,

r( ✓ ) =
a bp

( a c o s✓ ) 2 + ( b si n ✓ ) 2
( 6 )

w h e r e a a n d b a r e t h e se m i - m a j o r a n d se m i - m i n o r a x e sr e -
sp e c t i v e l y .

I f w e n o w fi t t h e a b o v e e l l i p t i c e q u a t i o n t o t h e d a t a
p o i n t sw i t h e r r o r sa sse e i n F i g . 2 w e c a n o b t a i n c o n st r a i n t s
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Figure 1. We plot ⇠(s) for various values of µ. The black squares

from top to bottom correspond to µ=0.9167, 0.7500, 0.5833,

0.4167, 0.2500, 0.0833, respectively. The black dashed line cor-

responds to eq.5.
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Figure 2. The obtained values of the scaling parameter, D, as a

function of los angle µ. The values and errorbars were obtained

from an mcmc analysis.

o n t h e v a l u e so f a a n d b w h i c h r e p r e se n t o u r sc a l i n g p a r a m -
e t e r a l o n g t h e l i n e o f si g h t , D // a n d a c r o sst h e l i n e o f si g h t ,
D ? . T h e 1 - a n d 2- si g m a c o n st r a i n t sa r e r e p r e se n t e d i n F i g . 3 .

3 BAO PEAK STRUCTURE SENSITIVITIES

T h e B A O r i n g w i l l r e m a i n u n c h a n g e d d u e t o t h e o v e r a l l a m -
p l i t u d e sh i f t i n d u c e d b y v a r i a t i o n si n g a l a x y b i a s. H o w e v e r
i t sh o u l d b e c h e c k e d h o w t h e p e a k st r u c t u r e i se ↵ e c t e d w h e n
w e c o n si d e r fi n g e r - o f - g o d d i st o r t i o n s, n o n - l i n e a r g r o w t h a n d ,
v a r i a t i o n si n t h e o v e r a l l sh a p e i n d u c e d b y u n k n o w n h a n d
o f c o u r se t h e A P e ↵ e c t . W e w i sh t o i so l a t e t h e l a t t e r e f -
f e c t si n c e i t e n c o d e sd i st a n c e i n f o r m a t i o n w h i c h i n t u r n c a n
i n f o r m i so f t h e e x p a n si o n h i st o r y .

c� 0000 RAS, MNRAS 000, 000–000
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Simply we can fit an elliptic 
function to the obtained 
D(μ) and get a semi-major 
and minor distance defining 
an ellipse. 

2 C r is t ia n oG . S a b iu , Y on g - S e on S on g

t e r , r e s p e c t i v e l y . I n t h e p a r t i c u l a r c a s e o f a fl a t u n i v e r s e w i t h
c o n s t a n t d a r k e n e r g y E o S , t h e y t a k e t h e f o r m s o f

H ( z ) = H
0

q
⌦m a �3 + ( 1 � ⌦m ) a �3(1+w) ,

D A ( z ) =
1

1 + z
r( z ) =

1
1 + z

Z z

0

d z 0

H ( z 0 )
, ( 2)

w h e r e a = 1 / ( 1 + z ) i s t h e c o s m i c s c a l e f a c t o r , H
0

i s t h e
p r e s e n t v a l u e o f H u b b l e p a r a m e t e r a n d r( z ) i s t h e c o m o v i n g
d i s t a n c e .

T h e o b s e r v e d d i s t a n c e b e t w e e n t w o g a l a x i e s r d e fi n e d
a s s u m i n g a fi d u c i a l o r r e f e r e n c e c o s m o l o g i c a l m o d e l , a n d t h e
o b s e r v e d c o s i n e o f t h e a n g l e t h e p a i r m a k e s w i t h r e s p e c t t o
t h e l o s µ a r e g i v e n b y

r2 = r2

|| + r2

? ; µ =
r||
r

( 3 )

w h e r e r|| i s t h e l o s s e p a r a t i o n a n d r? i s t h e t r a n s v e r s e s e p -
a r a t i o n . T h e e s t i m a t e o f t h e s e s e p a r a t i o n s i s d e p e n d e n t o n
t h e a s s u m e d c o s m o l o g y m o d e l .

W e e s t i m a t e t h e 2- p o i n t c o r r e l a t i o n f u n c t i o n ( 2P C F )
i n r e s h i f t - s p a c e a n d i n t h e a n i s o t r o p i c s , µ - d e c o m p o s i t i o n .
T h e c o r r e l a t i o n f u n c t i o n s a r e c a l c u l a t e d u s i n g t h e “ L a n d y -
S z a l a y ” e s t i m a t o r ,

⇠ ( s , µ ) =
D D ( s , µ ) � 2D R ( s , µ ) + RR ( s , µ )

RR ( s , µ )
, ( 4 )

w h e r e D D i s t h e n u m b e r o f g a l a x y – g a l a x y p a i r s , D R t h e
n u m b e r o f g a l a x y - r a n d o m p a i r s , a n d RR i s t h e n u m b e r o f
r a n d o m – r a n d o m p a i r s , a l l s e p a r a t e d b y a d i s t a n c e s ± � s
a n d a n g l e µ ±� µ . T h e p a i r c o u n t s a r e n o r m a l i s e d s i n c e w e
u s e 20 t i m e s a s m a n y r a n d o m s a n d d a t a p o i n t t o r e d u c e s h o t
n o i s e c o n t r i b u t i o n s t o t h e c o r r e l a t i o n e s t i m a t i o n .

W e c a n m o d e l t h e c o r r e l a t i o n f u n c t i o n w e l l u s i n g ,

⇠µ ( s ) ⇥ s 2 = A . s 2 + B . s + E e �(s�D)

2/C + F , ( 5 )

w h i c h i s j u s t a q u a d r a t i c f u n c t i o n p l u s a g a u s s i a n ( f o r t h e
B A O p e a k ) . I n o u r w o r k t h e f o c u s w i l l b e o n c o n s t r a i n i n g
t h e s c a l e p a r a m e t e r , D, a s a f u n c t i o n o f t h e a n i s o t r o p y a n g l e ,
µ .

I n F i g . 1 w e s h o w t h e 2P C F , ⇠ ( s ) f o r v a r i o u s µ v a l u e s . I n
a l l µ - d i r e c t i o n s t h e B A O f e a t u r e i s c l e a r l y s e e n . T h e s e c o r r e -
l a t i o n f u n c t i o n s a r e t h e a v e r a g e o f 1 6 2L P T m o c k s C M A S S
s a m p l e s i n t h e r e d s h i f t r a n g e 0 . 4 3 < z < 0 . 7 .

I n F i g . 2 w e s h o w t h e v a l u e s o f D o b t a i n e d f r o m fi t t i n g
t h e m o d e l o f E q 5 t o t h e m e a s u r e d ⇠ c u r v e s o f F i g . 1 . T h e
fi t t i n g w a s d o n e u s i n g a 20 , 0 0 0 c h a i n m c m c . T h e fi t t i n g w a s
d o n e o f t h e r a n g e 7 0 < s [ M p c / h ] < 1 5 0 , s a m p l e d i n 1 M p c / h
b i n s . T h e e r r o r s o n t h e m e a s u r e m e n t s w e r e a s s u m e d t o b e
s m a l l , 1 % . T h e o b t a i n s e r r o r s a r e d u e t o a c o m b i n a t i o n o f
t h e a s s u m e d m e a s u r e m e n t e r r o r s a n d t h e t e n s i o n i n f r o m t h e
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Figure 1. We plot ⇠(s) for various values of µ. The black squares

from top to bottom correspond to µ=0.9167, 0.7500, 0.5833,

0.4167, 0.2500, 0.0833, respectively. The black dashed line cor-

responds to eq.5.
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Figure 2. The obtained values of the scaling parameter, D, as a

function of los angle µ. The values and errorbars were obtained

from an mcmc analysis.
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D(✓) =
D||D?q�

D|| cos ✓
�2

+ (D? sin ✓)2

From this we constrain the 
two distances, D// along the line 
of sight and D⊥ across the line 
of sight.

Anisotropic BAO Peaks2 Cristiano G. Sabiu, Yong-Seon Song

t e r , r e sp e c t i v e l y . I n t h e p a r t i c u l a r c a se o f a fl a t u n i v e r se w i t h
c o n st a n t d a r k e n e r g y E o S , t h e y t a k e t h e f o r m so f

H ( z ) = H
0

q
⌦m a �3 + ( 1 � ⌦m ) a �3(1+w) ,

D A ( z ) =
1

1 + z
r( z ) =

1
1 + z

Z z

0

d z 0

H ( z 0 )
, ( 2)

w h e r e a = 1 / ( 1 + z ) i st h e c o sm i c sc a l e f a c t o r , H
0

i st h e
p r e se n t v a l u e o f H u b b l e p a r a m e t e r a n d r( z ) i st h e c o m o v i n g
d i st a n c e .

T h e o b se r v e d d i st a n c e b e t w e e n t w o g a l a x i e sr d e fi n e d
a ssu m i n g a fi d u c i a l o r r e f e r e n c e c o sm o l o g i c a l m o d e l , a n d t h e
o b se r v e d c o si n e o f t h e a n g l e t h e p a i r m a k e sw i t h r e sp e c t t o
t h e l o sµ a r e g i v e n b y

r2 = r2|| + r2? ; µ =
r||
r

( 3 )

w h e r e r|| i st h e l o sse p a r a t i o n a n d r? i st h e t r a n sv e r se se p -
a r a t i o n . T h e e st i m a t e o f t h e se se p a r a t i o n si sd e p e n d e n t o n
t h e a ssu m e d c o sm o l o g y m o d e l .

W e e st i m a t e t h e 2- p o i n t c o r r e l a t i o n f u n c t i o n ( 2P C F )
i n r e sh i f t - sp a c e a n d i n t h e a n i so t r o p i c s , µ - d e c o m p o si t i o n .
T h e c o r r e l a t i o n f u n c t i o n sa r e c a l c u l a t e d u si n g t h e “ L a n d y -
S z a l a y ” e st i m a t o r ,

⇠ ( s , µ ) =
D D ( s , µ ) � 2D R ( s , µ ) + RR ( s , µ )

RR ( s , µ )
, ( 4 )

w h e r e D D i st h e n u m b e r o f g a l a x y – g a l a x y p a i r s, D R t h e
n u m b e r o f g a l a x y - r a n d o m p a i r s, a n d RR i st h e n u m b e r o f
r a n d o m – r a n d o m p a i r s, a l l se p a r a t e d b y a d i st a n c e s ± � s
a n d a n g l e µ ±� µ . T h e p a i r c o u n t sa r e n o r m a l i se d si n c e w e
u se 20 t i m e sa sm a n y r a n d o m sa n d d a t a p o i n t t o r e d u c e sh o t
n o i se c o n t r i b u t i o n st o t h e c o r r e l a t i o n e st i m a t i o n .

W e c a n m o d e l t h e c o r r e l a t i o n f u n c t i o n w e l l u si n g ,

⇠µ ( s ) ⇥ s 2 = A . s 2 + B . s + E e �(s�D)

2/C + F , ( 5 )

w h i c h i sj u st a q u a d r a t i c f u n c t i o n p l u sa g a u ssi a n ( f o r t h e
B A O p e a k ) . I n o u r w o r k t h e f o c u sw i l l b e o n c o n st r a i n i n g
t h e sc a l e p a r a m e t e r , D, a sa f u n c t i o n o f t h e a n i so t r o p y a n g l e ,
µ .

I n F i g . 1 w e sh o w t h e 2P C F , ⇠ ( s ) f o r v a r i o u sµ v a l u e s. I n
a l l µ - d i r e c t i o n st h e B A O f e a t u r e i sc l e a r l y se e n . T h e se c o r r e -
l a t i o n f u n c t i o n sa r e t h e a v e r a g e o f 1 6 2L P T m o c k sC M A S S
sa m p l e si n t h e r e d sh i f t r a n g e 0 . 4 3 < z < 0 . 7 .
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m a y b e t o o i n fl e x i b l e t o o b t a i n st h e d e si r e d fi t t h u sa l l o w i n g
d e g e n e r a c i e st o w i d e n t h e c o n st r a i n t so n t h e p a r a m e t e r s.

T h e g e n e r a l e x p r e ssi o n f o r a n e l l i p se i n p o l a r c o o r d i -
n a t e si s,

r( ✓ ) =
a bp

( a c o s✓ ) 2 + ( b si n ✓ ) 2
( 6 )

w h e r e a a n d b a r e t h e se m i - m a j o r a n d se m i - m i n o r a x e sr e -
sp e c t i v e l y .

I f w e n o w fi t t h e a b o v e e l l i p t i c e q u a t i o n t o t h e d a t a
p o i n t sw i t h e r r o r sa sse e i n F i g . 2 w e c a n o b t a i n c o n st r a i n t s
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Figure 1. We plot ⇠(s) for various values of µ. The black squares
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0.4167, 0.2500, 0.0833, respectively. The black dashed line cor-
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Figure 2. The obtained values of the scaling parameter, D, as a

function of los angle µ. The values and errorbars were obtained

from an mcmc analysis.
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t e r , r e s p e c t i v e l y . I n t h e p a r t i c u l a r c a s e o f a fl a t u n i v e r s e w i t h
c o n s t a n t d a r k e n e r g y E o S , t h e y t a k e t h e f o r m s o f

H ( z ) = H
0

q
⌦m a �3 + ( 1 � ⌦m ) a �3(1+w) ,

D A ( z ) =
1

1 + z
r( z ) =

1
1 + z

Z z

0

d z 0

H ( z 0 )
, ( 2)

w h e r e a = 1 / ( 1 + z ) i s t h e c o s m i c s c a l e f a c t o r , H
0

i s t h e
p r e s e n t v a l u e o f H u b b l e p a r a m e t e r a n d r( z ) i s t h e c o m o v i n g
d i s t a n c e .

T h e o b s e r v e d d i s t a n c e b e t w e e n t w o g a l a x i e s r d e fi n e d
a s s u m i n g a fi d u c i a l o r r e f e r e n c e c o s m o l o g i c a l m o d e l , a n d t h e
o b s e r v e d c o s i n e o f t h e a n g l e t h e p a i r m a k e s w i t h r e s p e c t t o
t h e l o s µ a r e g i v e n b y

r2 = r2

|| + r2

? ; µ =
r||
r

( 3 )

w h e r e r|| i s t h e l o s s e p a r a t i o n a n d r? i s t h e t r a n s v e r s e s e p -
a r a t i o n . T h e e s t i m a t e o f t h e s e s e p a r a t i o n s i s d e p e n d e n t o n
t h e a s s u m e d c o s m o l o g y m o d e l .

W e e s t i m a t e t h e 2- p o i n t c o r r e l a t i o n f u n c t i o n ( 2P C F )
i n r e s h i f t - s p a c e a n d i n t h e a n i s o t r o p i c s , µ - d e c o m p o s i t i o n .
T h e c o r r e l a t i o n f u n c t i o n s a r e c a l c u l a t e d u s i n g t h e “ L a n d y -
S z a l a y ” e s t i m a t o r ,

⇠ ( s , µ ) =
D D ( s , µ ) � 2D R ( s , µ ) + RR ( s , µ )

RR ( s , µ )
, ( 4 )

w h e r e D D i s t h e n u m b e r o f g a l a x y – g a l a x y p a i r s , D R t h e
n u m b e r o f g a l a x y - r a n d o m p a i r s , a n d RR i s t h e n u m b e r o f
r a n d o m – r a n d o m p a i r s , a l l s e p a r a t e d b y a d i s t a n c e s ± � s
a n d a n g l e µ ±� µ . T h e p a i r c o u n t s a r e n o r m a l i s e d s i n c e w e
u s e 20 t i m e s a s m a n y r a n d o m s a n d d a t a p o i n t t o r e d u c e s h o t
n o i s e c o n t r i b u t i o n s t o t h e c o r r e l a t i o n e s t i m a t i o n .

W e c a n m o d e l t h e c o r r e l a t i o n f u n c t i o n w e l l u s i n g ,

⇠µ ( s ) ⇥ s 2 = A . s 2 + B . s + E e �(s�D)

2/C + F , ( 5 )

w h i c h i s j u s t a q u a d r a t i c f u n c t i o n p l u s a g a u s s i a n ( f o r t h e
B A O p e a k ) . I n o u r w o r k t h e f o c u s w i l l b e o n c o n s t r a i n i n g
t h e s c a l e p a r a m e t e r , D, a s a f u n c t i o n o f t h e a n i s o t r o p y a n g l e ,
µ .

I n F i g . 1 w e s h o w t h e 2P C F , ⇠ ( s ) f o r v a r i o u s µ v a l u e s . I n
a l l µ - d i r e c t i o n s t h e B A O f e a t u r e i s c l e a r l y s e e n . T h e s e c o r r e -
l a t i o n f u n c t i o n s a r e t h e a v e r a g e o f 1 6 2L P T m o c k s C M A S S
s a m p l e s i n t h e r e d s h i f t r a n g e 0 . 4 3 < z < 0 . 7 .

I n F i g . 2 w e s h o w t h e v a l u e s o f D o b t a i n e d f r o m fi t t i n g
t h e m o d e l o f E q 5 t o t h e m e a s u r e d ⇠ c u r v e s o f F i g . 1 . T h e
fi t t i n g w a s d o n e u s i n g a 20 , 0 0 0 c h a i n m c m c . T h e fi t t i n g w a s
d o n e o f t h e r a n g e 7 0 < s [ M p c / h ] < 1 5 0 , s a m p l e d i n 1 M p c / h
b i n s . T h e e r r o r s o n t h e m e a s u r e m e n t s w e r e a s s u m e d t o b e
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d e g e n e r a c i e s t o w i d e n t h e c o n s t r a i n t s o n t h e p a r a m e t e r s .

T h e g e n e r a l e x p r e s s i o n f o r a n e l l i p s e i n p o l a r c o o r d i -
n a t e s i s ,

r( ✓ ) =
a bp

( a c o s ✓ ) 2 + ( b s i n ✓ ) 2
( 6 )

w h e r e a a n d b a r e t h e s e m i - m a j o r a n d s e m i - m i n o r a x e s r e -
s p e c t i v e l y .

I f w e n o w fi t t h e a b o v e e l l i p t i c e q u a t i o n t o t h e d a t a
p o i n t s w i t h e r r o r s a s s e e i n F i g . 2 w e c a n o b t a i n c o n s t r a i n t s
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0.4167, 0.2500, 0.0833, respectively. The black dashed line cor-

responds to eq.5.
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Figure 2. The obtained values of the scaling parameter, D, as a

function of los angle µ. The values and errorbars were obtained

from an mcmc analysis.
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e t e r a l o n g t h e l i n e o f s i g h t , D // a n d a c r o s s t h e l i n e o f s i g h t ,
D ? . T h e 1 - a n d 2- s i g m a c o n s t r a i n t s a r e r e p r e s e n t e d i n F i g . 3 .

3 BAO PEAK STRUCTURE SENSITIVITIES

T h e B A O r i n g w i l l r e m a i n u n c h a n g e d d u e t o t h e o v e r a l l a m -
p l i t u d e s h i f t i n d u c e d b y v a r i a t i o n s i n g a l a x y b i a s . H o w e v e r
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Next we create theoretical 
models that include different 
systematics and and 
observational effects.

In the fiducial case we obtain a 
simultaneous measurement of 
DA and H-1
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Figure 3. Contour of 1- and 2-sigma for the fitting of Eq.6.
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Figure 4. Contour of 1- and 2-sigma for the fitting of Eq.6.

3.1 Velocities

We first consider the fingers-of-god e↵ect where the galaxy
distribution is elongated in redshift space, with an axis of
elongation pointed toward the observer. It is caused by a
Doppler shift associated with the random peculiar velocities
of galaxies bound in structures such as clusters. The devi-
ation from the Hubble’s law relationship between distance
and redshift is altered, and this leads to inaccurate distance
measurements.

We now proceed to check if the FoG distortion e↵ects
the BAO peak position. In Fig.5 we show the derived dis-
tance measurements using models with various �v choices,
of 0, 2, 4, 6, 8 Mpc/h. We find no significant trend or devi-
ation with these values of �v with either D// or D? and all
measurements lie within a 1% error margin.

3.2 Non-linear

Comparing linear theory prediction with RegPT ref ref
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3.3 Hubble value

In Fig.6 we show the e↵ect of changing the hubble constant
in the primordial spectra on the derived distance measures.
However we do not include the AP distortion in this theo-
retical template. We find that variations of ±6Mpc in h do
not alter the obtained values of D// and D?.

3.4 Bias

In Fig.7 we show the e↵ect of changing the bias factor of
the theoretical 2pcf on the derived distance measures. Since
the bias a linear we should not expect a shift in the BAO
peak position however we investigate this change in the case
that our minimal model can still fit the peak position with-
out introducing any systematic variation due to inaccurate
fitting. We find that values of b = 1.2, 1.4,1.6, 1.8 all give
consistent values of D// and D?.

3.5 Alcock-Paczynski

The AP e↵ect is now included ....
In Fig.8 we
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Will certain systematic uncertainties effect our 
methodology to reliably estimate the peak location?
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4 TESTS ON SIMULATED DATA

In this section we test our methodology on simulated mock
data and check if we can recover the fiducial parameters.

4.1 Data

In order to check the validity of our overall approach, we
test it against simulations. We use the PTHALO mock galaxy
catalogs created by Manera et al. (2012), which are de-
signed to investigate the various systematics in the galaxy
sample from Data Release 11 (DR11) of the Baryon Oscil-
lation Spectroscopic Survey (BOSS) (Schlegel et al. 2009;
Eisenstein et al. 2011; Anderson et al. 2012), referred to
as the “CMASS” galaxy sample. In constructing the mock
galaxy catalogs, (Manera et al. 2012) utilized second-order
Lagrangian perturbation theory (2LPT) for the galaxy clus-
tering driven by gravity, which enables the creation of a
mock catalog much faster than running an N -body simula-
tion. The mocks catalogs constitute 600 density field realiza-
tions which span the redshift range of the observed galaxies
in our sample i.e. 0.43 < z < 0.7. Each catalog contains

⇠ 7⇥ 105 galaxies, 90% of which are central galaxies resid-
ing in dark matter halos of ⇠ 1013h�1M�.

4.2 results

5 CONCLUSIONS

We have investigated the sensitivity of the shape of the BAO
ring to various systematics. We find that the shape of the
BAO ring is invariant to non-linearities in the density field,
non-linear FoG distortions and unknown shape change in
the primordial spectra quantified using h. This invariance
allowed us to focus on measurements of the AP e↵ect and
to infer cosmological parameters pertaining to the expansion
history.

We tested this methodology using mock galaxy cata-
logues and found that we can recover the input cosmology....
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3.1 Velocities

We first consider the fingers-of-god e↵ect where the galaxy
distribution is elongated in redshift space, with an axis of
elongation pointed toward the observer. It is caused by a
Doppler shift associated with the random peculiar velocities
of galaxies bound in structures such as clusters. The devi-
ation from the Hubble’s law relationship between distance
and redshift is altered, and this leads to inaccurate distance
measurements.

We now proceed to check if the FoG distortion e↵ects
the BAO peak position. In Fig.5 we show the derived dis-
tance measurements using models with various �v choices,
of 0, 2, 4, 6, 8 Mpc/h. We find no significant trend or devi-
ation with these values of �v with either D// or D? and all
measurements lie within a 1% error margin.

3.2 Non-linear

Comparing linear theory prediction with RegPT ref ref
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3.3 Hubble value

In Fig.6 we show the e↵ect of changing the hubble constant
in the primordial spectra on the derived distance measures.
However we do not include the AP distortion in this theo-
retical template. We find that variations of ±6Mpc in h do
not alter the obtained values of D// and D?.

3.4 Bias

In Fig.7 we show the e↵ect of changing the bias factor of
the theoretical 2pcf on the derived distance measures. Since
the bias a linear we should not expect a shift in the BAO
peak position however we investigate this change in the case
that our minimal model can still fit the peak position with-
out introducing any systematic variation due to inaccurate
fitting. We find that values of b = 1.2, 1.4,1.6, 1.8 all give
consistent values of D// and D?.

3.5 Alcock-Paczynski

The AP e↵ect is now included ....
In Fig.8 we
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We show the derived distance measurements 
using models with various σv choices, of 0, 2, 4, 
6, 8 Mpc/h. No significant trend or deviation with 
these values of σv with either D// or D⊥ and all 
measurements lie within a 1% error margin.

we show the effect of changing the bias factor on 
the derived distance measures.  We find that 
values of b = 1.2, 1.4,1.6, 1.8 all give consistent 
values of D// and D⊥.

Anisotropic BAO Peaks

We also checked the effect of shifting the overall shape of the spectrum and 
looked at Linear vs NonLinear templates.  However all give 1% level or less 
deviations on the distances. So our fitting function seems to have enough 
freedom to accommodate many unknown factors that, in the end, we don’t want 
to deal with!
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Will certain systematic uncertainties effect our 
methodology to reliably estimate the peak location?

changing little h changes the amount of dark 
matter (Om=wm/h2)  and ODE  (assuming flatness)
This then effects DA and H-1 

4 Cristiano G. Sabiu, Yong-Seon Song

163 164 165 166 167 168 169

156

157

158

159

160

161

162

163

D
⊥
 [Mpc]

D
|
|
 
[
M
p
c
]

Figure 7. Contour of 1- and 2-sigma for the fitting of Eq.6.

64 66 68 70 72 74 76 78

145

150

155

160

D
|
|
 
[
M
p
c
]

h [km/s/Mpc]

        

145

150

155

160

165

170

D
⊥
 
[
M
p
c
]

Figure 8. Contour of 1- and 2-sigma for the fitting of Eq.6.

4 TESTS ON SIMULATED DATA

In this section we test our methodology on simulated mock
data and check if we can recover the fiducial parameters.

4.1 Data

In order to check the validity of our overall approach, we
test it against simulations. We use the PTHALO mock galaxy
catalogs created by Manera et al. (2012), which are de-
signed to investigate the various systematics in the galaxy
sample from Data Release 11 (DR11) of the Baryon Oscil-
lation Spectroscopic Survey (BOSS) (Schlegel et al. 2009;
Eisenstein et al. 2011; Anderson et al. 2012), referred to
as the “CMASS” galaxy sample. In constructing the mock
galaxy catalogs, (Manera et al. 2012) utilized second-order
Lagrangian perturbation theory (2LPT) for the galaxy clus-
tering driven by gravity, which enables the creation of a
mock catalog much faster than running an N -body simula-
tion. The mocks catalogs constitute 600 density field realiza-
tions which span the redshift range of the observed galaxies
in our sample i.e. 0.43 < z < 0.7. Each catalog contains

⇠ 7⇥ 105 galaxies, 90% of which are central galaxies resid-
ing in dark matter halos of ⇠ 1013h�1M�.

4.2 results

5 CONCLUSIONS

We have investigated the sensitivity of the shape of the BAO
ring to various systematics. We find that the shape of the
BAO ring is invariant to non-linearities in the density field,
non-linear FoG distortions and unknown shape change in
the primordial spectra quantified using h. This invariance
allowed us to focus on measurements of the AP e↵ect and
to infer cosmological parameters pertaining to the expansion
history.

We tested this methodology using mock galaxy cata-
logues and found that we can recover the input cosmology....
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The Alcock-Paczynski 
geometrical distortions 
are large compared to the 
systematic variations we 
found previously.

We are currently working 
on this method to give us 
tight and unbiased 
constraints on DA , H

Anisotropic BAO Peaks
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We don’t need a standard ruler for AP effect....
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Clustering Shells
Even without a standard ruler, we can measure the clustering 
along and perpendicular to the line of sight and thus constrain the 
combination of  DA and H-1

In this statistical analysis we aim to constrain the AP effect.
Rather than using the BAO peak position, we use the integrated 
clustering signal in different directions.

Pictorially what happens to cosmological positions if translated 
using an incorrect cosmological model.

4 Xiao-Dong Li, Changbom Park, Cristiano G. Sabiu and Juhan Kim

To probe the anisotropy, ξ is measured at different di-
rections, and integrated over the interval ∆s = smax − smin.
We evaluate,

ξ∆s(µ) ≡

∫ smax

smin

ξ(s, µ) ds. (5)

We limit the integral at both small and large scales. At small
scales the shape of ξ∆s(µ) is seriously distorted by the FoG
effect, and the distortion is more significant at lower redshift
where structure undergoes more non-linear growth. This in-
troduces redshift evolution in ξ∆s(µ) which is rather diffi-
cult to model. At large scales the measurement is dominated
by noise due to poor statistics. In our analysis, we choose
smin = 6 Mpc/h and smax = 50 Mpc/h, which we found to
provide consistent and unbiased results.

As an example Figure 2 shows how the 2pCF is affected
by AP and volume effects in the Ωm = 0.41, w = −1.3
cosmology. In choosing incorrect cosmological parameters,
we expect the 2pCF to be influenced in three ways. First,
as a result of the AP effect, structures appear compressed
in the radial direction. This induces a nonuniform variation
in ξ∆s(µ) as a function of angle. Second, as a result of the
volume effect, the size of structures are shrunk. For example,
a structures whose original size is s0 = 50 Mpc/h will shows
up with a size s1 < 50 Mpc/h. As a result, the amplitude
of ξ∆s(µ) changes. Finally, as another consequence of the
volume effect, in the wrong cosmology structures on larger
scales enter the statistics. For example, halos within the blue
solid box are not considered in the correct cosmology, but
they are taken into consideration in the wrong cosmology, as
shown by the black dashed box. This also results in a change
in the amplitude of ξ∆s(µ) since the binning in s, µ-space
will be inconsistent between different cosmological models.
The combined effects of choosing an incorrect cosmology on
shear and volume have been noted by Park & Kim (2010),
who used the volume effects measured by the genus statistic
to constrain the expansion history of the universe.

5 RESULT

Figure 3 shows the ξ∆s measured from HR3 mock surveys,
adopting the correct cosmology (left), the Ωm = 0.11, w =
−0.7 cosmology (middle), and the Ωm = 0.41, w = −1.3
cosmology (right). To study the redshift evolution, we divide
the redshift range z = 0− 1.5 into five equal-width redshift
bins 1. To measure anisotropy, we further divide the full
angular range µ = 0 − 1 is into 10 equal-width bins. So we
have

ξ∆s(zi, µj) ≡ ξ∆s in the i − th redshift bin, j − th µ bin(6)

where i = 1, 2, ..., 5, j = 1, 2, ...10. Measurements with-
out/with considering RSD effect are plotted in solid/dashed
lines, respectively.

The result for the correct cosmology is plotted in the
upper left panel of Figure 3. In the absence of RSD, we ob-
tain flat curves of ξ∆s(µ) in all redshift bins, with the am-
plitude slightly different from one redshift bin to another.

1 We do not show the result of the first redshift bin, which is
noisy due to poor statistics.

This difference can arise from two sources; (a) The growth
of clustering with the decreasing of redshift (b) The redshift
evolution of the bias of halos having the same comoving den-
sity. The result is significantly changed when we include the
RSD effect. Near the LOS direction (µ → 1), structures are
compressed due to the Kaiser effect, so the value of ξ∆s(µ)
is smaller compared with measurements near the tangential
direction2. But it should be noted that the shape of ξ∆s(µ)
is nearly the same at all redshifts, indicating the small red-
shift dependence of the RSD effect. It is this observation that
makes our method both feasible and statistically powerful.
Even though the 2pCF becomes very anisotropic in redshift
space, the anisotropy due to RSD does not change much as
a function of redshift and its redshift-dependence is dom-
inated by the geometric effects introduced by the adopted
cosmology.

The results of the Ωm = 0.11, w = −0.7 and Ωm = 0.41,
w = −1.3 cosmologies are plotted in the middle and right
panels, respectively. We can see that ξ∆s is significantly al-
tered by the volume and AP effects. In the Ωm = 0.41,
w = −1.3 cosmology, the shrinkage of comoving volume sup-
presses the amplitude of ξ∆s(µ), and the LOS shape com-
pression of structures results in a suppression of amplitude
in the LOS direction compared with the tangential. Both
effects become increasingly more significant at higher red-
shift. Similarly, in the Ωm = 0.11, w = −0.7 cosmology, we
see an enhancement of amplitude and relative enhancement
in the LOS direction, and these effects are more significant
at earlier times.

In real observational data the redshift evolution of the
bias of observed galaxies is difficult to model. Thus to miti-
gate this systematic uncertainty we wish to rely on the shape
of ξ∆s(µ), rather than its amplitude. In the lower panel of
Figure 3, we show the normalized ξ∆s(µ) in each redshift
bin, defined as

ξ̂∆s(µ) ≡
ξ∆s(µ)

∫ 1

0
ξ∆s(µ) dµ

. (7)

In the correct cosmology ξ̄∆s at different redshifts are iden-
tical to each other, while in the wrong cosmologies we see
clear redshift evolution.

Overall, the effect of RSD on the 2pCF is large but its
redshift dependence is small. Even with RSD, we can still
correctly determine the true cosmology by using the relative
change of ξ∆s with redshift. Based on this fact, we define our
χ2 as follows

χ2 ≡

4
∑

i=1

10
∑

j=1

[ξ̂∆s(zi, µj)− ξ̂∆s(z5, µj)]
2

σ2
ξ̂∆s(zi,µj)

+ σ2
ξ̂∆s(z5,µj)

. (8)

The 2pCF measured in the 1-4 redshift bins are compared
(or normalized) to the measurement in the last redshift bin.
This χ2 will prefer minimal shape change over the redshift
range, with little of no weight given to the amplitude of the
clustering statistic.

Similar to Li et al. (2014), we further correct the resid-
ual RSD effect, i.e., the following quantity is computed in
the correct cosmology and subtracted from our results,

2 The FoG effect will enhance ξ∆s(µ) in the LOS direction. It
does not significantly show up in our figures since we impose the
cut smin = 6 Mpc/h.
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Figure 1. The redshift dependence of AP and volume effect in two wrongly assumed cosmologies Ωm = 0.41, w = −1.3 and Ωm = 0.11,
w = −0.7, assuming a true cosmology of Ωm = 0.26, w = −1. Upper panel shows the apparent distortion of four perfect squares. The
apparently distorted shapes are plotted in red solid lines. The underlying true shapes are plotted in blue dashed lines. Lower panel shows
the evolution of Equations (1) and (2). In our mock surveys we split the samples at z = 0.3, 0.6, 0.9 and 1.2, as marked by the vertical
lines.

separation. Then the Physically Self Bound (PSB) subha-
los that are gravitationally self-bound and tidally stable are
identified (Kim & Park 2006).

An all-sky, very deep light cone survey reaching redshift
z = 4.3 was made by placing an observer located at the cen-
ter of the box. The co-moving positions and velocities of all
CDM particles are saved as they cross the past light cone
and PSB subhalos are identified from this particle data. To
match the observations of recent LRG surveys (Choi et al.
2010; Gott et al. 2009, 2008), a volume-limited sample of ha-
los with constant number density of 3×10−4(h−1Mpc)−3 are
selected by imposing a minimum halo mass limit and red-
shift range. The light cone survey sample consists of subha-
los at different redshifts, and thus their redshift dependence
on velocities and evolution of clustering are automatically
included. The peculiar velocity of the sub halo is set to that
of the most-bound particle in that subhalo.

We divide the whole-sky survey sample into eight equal
sky area subsamples and impose the redshift range z =
0 − 1.5. This mock data will be relevant for future galaxy
spectroscopic surveys (e.g. DESI Levi et al. 2013).

4 METHODOLOGY

We probe the effects discussed in §2 using the 2pCF. The
2pCF is a mature statistic in cosmology and its optimal
estimation considers minimal variance while dealing with
complicated masks and selection functions. The most com-
monly adopted formulation is that of the Landy-Szalay es-
timator (Landy & Szalay 1993),

ξ(s, µ) =
DD − 2DR +RR

RR
, (4)

where DD is the number of galaxy–galaxy pairs, DR the
number of galaxy-random pairs, and RR is the number of
random–random pairs, all separated by a distance defined
by s ± ∆s and µ ± ∆µ, where s is the distance between
the pair and µ = cos(θ), with θ being the angle between
the line joining the pair of points and the LOS direction.
This statistic therefore captures the radial anisotropy of the
clustering signal.

The random point catalogue constitutes an unclustered
but observationally representative sample of our mock sur-
veys. To reduce the statistical variance of the estimator we
use ∼15 times as many randoms as we have galaxies.

c© 2002 RAS, MNRAS 000, 1–8

For Om=0.41, 
w=-1.3, we see a 
stretch of the 
shape in the LOS 
direction and 
magnification of 
the volume

For Om=0.11, 
w=-0.7, we see a 
LOS shape 
compression and 
volume shrinkage.



Clustering Shells
The integrated clustering 
strength as a function of angle 
at varies redshifts.

In the no RSD case in the 
correct cosmology the 
curves are flat. In the wrong 
cosmologies they are 
distorted. 

With RSDs we see much 
more variation in shape and 
amplitude.

If we normalise the curves, 
then we remove amplitude 
information and minimise the 
volume effect thus focusing 
on a pure AP measurement. 
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Figure 3. The 2pCF measured in four redshift bins, in the correct cosmology (left) and two wrongly assumed cosmologies (middle:
Ωm = 0.11, w = −0.7; right: Ωm = 0.41, w = −1.3). The clustering signal is measure as a function of 1 − µ ,where µ = cos(θ) and θ
is the angle between the LOS and the vector joining the pair of galaxies. Dashed and solid lines show the results with and without the
RSD effect, respectively. Upper panel: In the wrongly assumed cosmologies, we observe a clear change in the amplitudes and shapes of
ξ due to the volume and AP effect. Additionally, due to the redshift dependence of volume and AP effect, the amplitudes and shapes in
the four redshift bins are different from each other. Lower panel: The same as the upper panel, except that the amplitudes of curves are
normalized to 1.

constraints become much tighter, with δΩm ∼ 0.007 and
δw ∼ 0.035. Also, the direction of degeneracy changes and
is very different from mainstream techniques of CMB, SNIa
and BAO, meaning that combining our method with these
techniques can significantly improve the constraint. To im-
plement it in real observational cases, it is necessary to
model the evolution of the clustering amplitude for the ob-
served galaxies.

6 CONCLUSION

We have presented a new anisotropic clustering statistic that
can probe the cosmic expansion history, while making mini-
mal assumptions about the underlying cosmological model.
We measure the integrated 2pCF, ξ∆s(µ) ≡

∫ smax

smin
ξ(s, µ)ds,

as a function of direction µ. The amplitude of ξ∆s(µ) is af-
fected by the volume effect, and the shape is affected by
the AP effect. Due to the redshift dependence of the volume
and AP effects, in wrongly adopted cosmologies there are
redshift evolutions of the amplitude and shape. The RSD

c© 2002 RAS, MNRAS 000, 1–8

Using mock many catalogues drawn from the 
Horizon Run simulations (from Juhan Kim, KIAS)
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Clustering Shells

The clustering shells provide a similar constraints to those obtained 
from standard BAO analysis.
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variation of galaxy sample with redshift.
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Figure 4. Left: Expected cosmological constraints from a 1/8-sky, z < 1.5 survey with a constant galaxy number density of n̄ = 3×10−4 .
We achieve unbiased constraints with δw ∼ 0.1 and δΩm ∼ 0.03 by comparing the shapes of ξ∆s(µ) measured in different redshift bins.
The gray contours denote 1, 2, 3σ. Right: Here we use the unnormalized ξ∆s(µ), which is sensitive to the volume change and thus provides
much tighter constraints. Although to use this in practice would mean overcoming some observational systematic uncertainties like galaxy
evolution and selection bias.

effect due to galaxy peculiar velocities, although having a
strong effect on ξ∆s(µ), does not exhibit significant redshift
evolution. Thus by focusing on the redshift dependence of
ξ∆s(µ), we are able to derive accurate and unbiased esti-
mates of cosmological parameters in spite of contamination
induced by RSD.

The concept of this paper is similar to Li et al. (2014),
where the redshift dependence of the AP effect is mea-
sured from the anisotropy in the galaxy density gradient
field. However, in this paper we choose a different statistical
method, i.e. the 2pCF. They differ from each other in several
aspects. 1) Using the 2pCF method it is more convenient to
choose the scales we investigate. 2) The advantage of the
density gradient field method is that, it allows us to utilize
the information on small scales of ∼10 Mpc/h (depending
on the scale of smoothing). 3) In the 2pCF method we are
able to probe the volume effect, which is not possible for the
galaxy density field method. 4) The 2pCF is a mature statis-
tic in cosmology and its optimal estimation and statistical
properties are well understood.

The volume effect, which causes redshift evolution in the
amplitude of 2pCF, leads to very tight constraint on cosmo-
logical parameters. But it suffers from systematic effects of
growth of clustering and the variation of galaxy sample with
redshift. It would be great if one can reliably model these
two effects and utilize the volume effect. In case that the
systematic effect can not be correctly modelled, one can fo-
cus on the AP effect by normalizing the amplitude of ξ∆s(µ)
and just investigating the redshift evolution of the shape.

When dealing with real observational data, it will be im-
portant to accurately model the galaxy clustering to remove
the residual RSD effects on the 2pCF. It will also require
the handling of various observation effects such as survey
geometry, fiber collisions, etc. We will report the results of
such investigations in forthcoming studies.

ACKNOWLEDGMENTS

We thank the Korea Institute for Advanced Study for pro-
viding computing resources (KIAS Center for Advanced
Computation Linux Cluster System). We thank Seokcheon
Lee and Graziano Rossi for many helpful discussions.

REFERENCES

Alcock, C., & Paczynski, B. 1979, Nature, 281, 358
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which leads to apparent anisotropy even if the adopted cos-
mology is correct (Ballinger Peacock & Heavens 1996). In Li
et al. (2014) we proposed a new method utilizing the red-
shift dependence of AP effect to overcome the RSD problem,
which uses the isotropy of the galaxy density gradient field.
We found that the redshift dependence of the anisotropy
created by RSD is much less significant compared with the
anisotropy caused by AP. Thus we measured the redshift de-
pendence of the galaxy density gradient field, which is less
affected by RSD, but still sensitive to cosmological parame-
ters.

The two-point correlation analysis is the most widely
used method to study the large scale clusterings of galax-
ies. So, in this paper we revisit the topic of Li et al. (2014)
using the galaxy two-point correlation function (2pCF). By
investigating the redshift dependence of anisotropic galaxy
clustering we can measure the AP effect despite of contam-
ination from RSD. Moreover, if the redshift evolution of
galaxy bias can be reliably modelled, then we can measure
the redshift evolution of volume effect from the amplitude
of 2pCF. The change of the comoving volume size is another
consequence of a wrongly adopted cosmology, which has mo-
tivated methods constraining cosmological parameters from
number counting of galaxy clusters (Press & Shechter 1974;
Viana & Liddle 1996) and topology (Park & Kim 2010).

The outline of this paper proceeds as follows. In §2 we
briefly review the nature and consequences of the AP effect
and volume changes when performing coordinate transforms
in a cosmological context. In §3 we describe the N-body
simulations and mock galaxy catalogues that are used to
test our methodology. In §4 we will describe our new analysis
method for quantifying the anisotropic clustering as well as
proposing a way to deal with the RSD that are convolved
with the AP distortion. Here we will also present results of
our optimised estimator. We conclude in §5.

2 THE AP AND VOLUME EFFECT DUE TO

WRONGLY ASSUMED COSMOLOGICAL

PARAMETERS

The AP and volume effect due to wrongly assumed cosmo-
logical parameters are shown in the upper panel of Figure
1. Suppose that the true cosmology is a flat ΛCDM with
present density parameter Ωm = 0.26 and standard dark
energy equation of state (EoS) w = −1. If we were to dis-
tribute four perfect squares at various distances from 500
Mpc/h to 3,000 Mpc/h, and an observer were to measure
their redshifts and compute their positions and shapes us-
ing redshift-distance relations of two incorrect cosmologies:

(i) Ωm = 0.41, w = −1.3,
(ii) Ωm = 0.11, w = −0.7,

the shapes of the squares appear distorted (AP effect), and
their volumes are changed (volume effect). In the cosmolog-
ical model (ii) with Ωm = 0.11, w = −0.7, we see a stretch
of the shape in the LOS direction (hereafter “LOS shape
stretch”) and magnification of the volume (hereafter “vol-
ume magnification”), while in the model with Ωm = 0.41,
w = −1.3, we see opposite effects, with LOS shape compres-
sion and volume shrinkage.

The degree of LOS shape stretch and volume magnifi-
cation can be described by the following quantities

[∆r‖/∆r⊥]wrong

[∆r‖/∆r⊥]true
=

[DA(z)H(z)]true
[DA(z)H(z)]wrong

, (1)

Volumewrong

Volumetrue
=

[DA(z)2/H(z)]wrong

[DA(z)2/H(z)]true
, (2)

where ∆r‖, ∆r⊥ are the angular and radial sizes of the ob-
jects, and “true” and “wrong” denote the values of quanti-
ties in the true cosmology and wrongly assumed cosmology.
DA and H are the angular diameter distance and Hubble
parameter, respectively. In the particular case of a flat uni-
verse with constant dark energy EoS, they take the forms
of

H(z) = H0

√

Ωma−3 + (1− Ωm)a−3(1+w),

DA(z) =
1

1 + z
r(z) =

1
1 + z

∫ z

0

dz′

H(z′)
, (3)

where a = 1/(1 + z) is the cosmic scale factor, H0 is the
present value of Hubble parameter and r(z) is the comoving
distance.

In the lower panel of Figure 1, we plot the degree of
LOS shape stretch and volume magnification as functions
of redshift. In cosmology (i), both quantities have value
less than 1, indicating LOS shape compression and volume
shrink. The effect in cosmology (ii) is slightly more subtle.
At low redshift, the effect of dark energy is important, and
there is LOS shape compression and volume reduction due
to the quintessence like dark energy EoS. However, at higher
redshift the role of dark matter is more important, and we
see LOS shape stretch and volume magnification due to the
small Ωm.

More importantly, Figure 1 highlights the redshift de-
pendence of the AP and volume effects. For example, in the
cosmology with Ωm = 0.41, w = −1.3, both the LOS shape
stretch and volume magnification become more significant
with increasing redshift. In the cosmology with Ωm = 0.11,
w = −0.7, not only do the magnitudes of the effects evolve
with redshift, but there is also a turnover from LOS shape
compression and volume shrink at lower redshift to LOS
shape stretch and volume magnification at higher redshift.

3 DATA

We test the methodology using mock surveys constructed
from one of the Horizon Run simulations, HR3. HR3 are a
suite of large volume N-body simulations that have resolu-
tions and volumes capable of reproducing the observational
statistics of many current major redshift surveys like SDSS
BOSS etc (Park et al. 2005; Kim et al. 2009, 2011). HR3
adopts a flat-space ΛCDM cosmology with the WMAP 5
year parameters Ωm = 0.26, H0 = 72km/s/Mpc, ns = 0.96
and σ8 = 0.79 (Komatsu et al. 2011). The simulation was
made in a cube of volume (10.815 h−1Gpc)3 using 71203

particles with particle mass of 1.25 × 1011h−1M% .
The simulations were integrated from z = 27 and

reached z = 0 after making Nstep = 600 timesteps. Dark
matter halos were identified using the Friend-of-Friend algo-
rithm with the linking length of 0.2 times the mean particle
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ies. So, in this paper we revisit the topic of Li et al. (2014)
using the galaxy two-point correlation function (2pCF). By
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proposing a way to deal with the RSD that are convolved
with the AP distortion. Here we will also present results of
our optimised estimator. We conclude in §5.
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logical parameters are shown in the upper panel of Figure
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present density parameter Ωm = 0.26 and standard dark
energy equation of state (EoS) w = −1. If we were to dis-
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their redshifts and compute their positions and shapes us-
ing redshift-distance relations of two incorrect cosmologies:

(i) Ωm = 0.41, w = −1.3,
(ii) Ωm = 0.11, w = −0.7,

the shapes of the squares appear distorted (AP effect), and
their volumes are changed (volume effect). In the cosmolog-
ical model (ii) with Ωm = 0.11, w = −0.7, we see a stretch
of the shape in the LOS direction (hereafter “LOS shape
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where a = 1/(1 + z) is the cosmic scale factor, H0 is the
present value of Hubble parameter and r(z) is the comoving
distance.

In the lower panel of Figure 1, we plot the degree of
LOS shape stretch and volume magnification as functions
of redshift. In cosmology (i), both quantities have value
less than 1, indicating LOS shape compression and volume
shrink. The effect in cosmology (ii) is slightly more subtle.
At low redshift, the effect of dark energy is important, and
there is LOS shape compression and volume reduction due
to the quintessence like dark energy EoS. However, at higher
redshift the role of dark matter is more important, and we
see LOS shape stretch and volume magnification due to the
small Ωm.

More importantly, Figure 1 highlights the redshift de-
pendence of the AP and volume effects. For example, in the
cosmology with Ωm = 0.41, w = −1.3, both the LOS shape
stretch and volume magnification become more significant
with increasing redshift. In the cosmology with Ωm = 0.11,
w = −0.7, not only do the magnitudes of the effects evolve
with redshift, but there is also a turnover from LOS shape
compression and volume shrink at lower redshift to LOS
shape stretch and volume magnification at higher redshift.

3 DATA

We test the methodology using mock surveys constructed
from one of the Horizon Run simulations, HR3. HR3 are a
suite of large volume N-body simulations that have resolu-
tions and volumes capable of reproducing the observational
statistics of many current major redshift surveys like SDSS
BOSS etc (Park et al. 2005; Kim et al. 2009, 2011). HR3
adopts a flat-space ΛCDM cosmology with the WMAP 5
year parameters Ωm = 0.26, H0 = 72km/s/Mpc, ns = 0.96
and σ8 = 0.79 (Komatsu et al. 2011). The simulation was
made in a cube of volume (10.815 h−1Gpc)3 using 71203

particles with particle mass of 1.25 × 1011h−1M% .
The simulations were integrated from z = 27 and

reached z = 0 after making Nstep = 600 timesteps. Dark
matter halos were identified using the Friend-of-Friend algo-
rithm with the linking length of 0.2 times the mean particle
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We construct a likelihood function by requiring that the shape change 
as a function of redshift is minimized. Of course there is a redshift 
evolution of the clustering, however this is modeled to first-order 
using N-body simulations.
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Figure 4. Left: Expected cosmological constraints from a 1/8-sky, z < 1.5 survey with a constant galaxy number density of n̄ = 3×10−4 .
We achieve unbiased constraints with δw ∼ 0.1 and δΩm ∼ 0.03 by comparing the shapes of ξ∆s(µ) measured in different redshift bins.
The gray contours denote 1, 2, 3σ. Right: Here we use the unnormalized ξ∆s(µ), which is sensitive to the volume change and thus provides
much tighter constraints. Although to use this in practice would mean overcoming some observational systematic uncertainties like galaxy
evolution and selection bias.

effect due to galaxy peculiar velocities, although having a
strong effect on ξ∆s(µ), does not exhibit significant redshift
evolution. Thus by focusing on the redshift dependence of
ξ∆s(µ), we are able to derive accurate and unbiased esti-
mates of cosmological parameters in spite of contamination
induced by RSD.

The concept of this paper is similar to Li et al. (2014),
where the redshift dependence of the AP effect is mea-
sured from the anisotropy in the galaxy density gradient
field. However, in this paper we choose a different statistical
method, i.e. the 2pCF. They differ from each other in several
aspects. 1) Using the 2pCF method it is more convenient to
choose the scales we investigate. 2) The advantage of the
density gradient field method is that, it allows us to utilize
the information on small scales of ∼10 Mpc/h (depending
on the scale of smoothing). 3) In the 2pCF method we are
able to probe the volume effect, which is not possible for the
galaxy density field method. 4) The 2pCF is a mature statis-
tic in cosmology and its optimal estimation and statistical
properties are well understood.

The volume effect, which causes redshift evolution in the
amplitude of 2pCF, leads to very tight constraint on cosmo-
logical parameters. But it suffers from systematic effects of
growth of clustering and the variation of galaxy sample with
redshift. It would be great if one can reliably model these
two effects and utilize the volume effect. In case that the
systematic effect can not be correctly modelled, one can fo-
cus on the AP effect by normalizing the amplitude of ξ∆s(µ)
and just investigating the redshift evolution of the shape.

When dealing with real observational data, it will be im-
portant to accurately model the galaxy clustering to remove
the residual RSD effects on the 2pCF. It will also require
the handling of various observation effects such as survey
geometry, fiber collisions, etc. We will report the results of
such investigations in forthcoming studies.
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which leads to apparent anisotropy even if the adopted cos-
mology is correct (Ballinger Peacock & Heavens 1996). In Li
et al. (2014) we proposed a new method utilizing the red-
shift dependence of AP effect to overcome the RSD problem,
which uses the isotropy of the galaxy density gradient field.
We found that the redshift dependence of the anisotropy
created by RSD is much less significant compared with the
anisotropy caused by AP. Thus we measured the redshift de-
pendence of the galaxy density gradient field, which is less
affected by RSD, but still sensitive to cosmological parame-
ters.

The two-point correlation analysis is the most widely
used method to study the large scale clusterings of galax-
ies. So, in this paper we revisit the topic of Li et al. (2014)
using the galaxy two-point correlation function (2pCF). By
investigating the redshift dependence of anisotropic galaxy
clustering we can measure the AP effect despite of contam-
ination from RSD. Moreover, if the redshift evolution of
galaxy bias can be reliably modelled, then we can measure
the redshift evolution of volume effect from the amplitude
of 2pCF. The change of the comoving volume size is another
consequence of a wrongly adopted cosmology, which has mo-
tivated methods constraining cosmological parameters from
number counting of galaxy clusters (Press & Shechter 1974;
Viana & Liddle 1996) and topology (Park & Kim 2010).

The outline of this paper proceeds as follows. In §2 we
briefly review the nature and consequences of the AP effect
and volume changes when performing coordinate transforms
in a cosmological context. In §3 we describe the N-body
simulations and mock galaxy catalogues that are used to
test our methodology. In §4 we will describe our new analysis
method for quantifying the anisotropic clustering as well as
proposing a way to deal with the RSD that are convolved
with the AP distortion. Here we will also present results of
our optimised estimator. We conclude in §5.
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present density parameter Ωm = 0.26 and standard dark
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the shapes of the squares appear distorted (AP effect), and
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ical model (ii) with Ωm = 0.11, w = −0.7, we see a stretch
of the shape in the LOS direction (hereafter “LOS shape
stretch”) and magnification of the volume (hereafter “vol-
ume magnification”), while in the model with Ωm = 0.41,
w = −1.3, we see opposite effects, with LOS shape compres-
sion and volume shrinkage.

The degree of LOS shape stretch and volume magnifi-
cation can be described by the following quantities
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where ∆r‖, ∆r⊥ are the angular and radial sizes of the ob-
jects, and “true” and “wrong” denote the values of quanti-
ties in the true cosmology and wrongly assumed cosmology.
DA and H are the angular diameter distance and Hubble
parameter, respectively. In the particular case of a flat uni-
verse with constant dark energy EoS, they take the forms
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where a = 1/(1 + z) is the cosmic scale factor, H0 is the
present value of Hubble parameter and r(z) is the comoving
distance.

In the lower panel of Figure 1, we plot the degree of
LOS shape stretch and volume magnification as functions
of redshift. In cosmology (i), both quantities have value
less than 1, indicating LOS shape compression and volume
shrink. The effect in cosmology (ii) is slightly more subtle.
At low redshift, the effect of dark energy is important, and
there is LOS shape compression and volume reduction due
to the quintessence like dark energy EoS. However, at higher
redshift the role of dark matter is more important, and we
see LOS shape stretch and volume magnification due to the
small Ωm.

More importantly, Figure 1 highlights the redshift de-
pendence of the AP and volume effects. For example, in the
cosmology with Ωm = 0.41, w = −1.3, both the LOS shape
stretch and volume magnification become more significant
with increasing redshift. In the cosmology with Ωm = 0.11,
w = −0.7, not only do the magnitudes of the effects evolve
with redshift, but there is also a turnover from LOS shape
compression and volume shrink at lower redshift to LOS
shape stretch and volume magnification at higher redshift.

3 DATA

We test the methodology using mock surveys constructed
from one of the Horizon Run simulations, HR3. HR3 are a
suite of large volume N-body simulations that have resolu-
tions and volumes capable of reproducing the observational
statistics of many current major redshift surveys like SDSS
BOSS etc (Park et al. 2005; Kim et al. 2009, 2011). HR3
adopts a flat-space ΛCDM cosmology with the WMAP 5
year parameters Ωm = 0.26, H0 = 72km/s/Mpc, ns = 0.96
and σ8 = 0.79 (Komatsu et al. 2011). The simulation was
made in a cube of volume (10.815 h−1Gpc)3 using 71203

particles with particle mass of 1.25 × 1011h−1M% .
The simulations were integrated from z = 27 and

reached z = 0 after making Nstep = 600 timesteps. Dark
matter halos were identified using the Friend-of-Friend algo-
rithm with the linking length of 0.2 times the mean particle
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consequence of a wrongly adopted cosmology, which has mo-
tivated methods constraining cosmological parameters from
number counting of galaxy clusters (Press & Shechter 1974;
Viana & Liddle 1996) and topology (Park & Kim 2010).

The outline of this paper proceeds as follows. In §2 we
briefly review the nature and consequences of the AP effect
and volume changes when performing coordinate transforms
in a cosmological context. In §3 we describe the N-body
simulations and mock galaxy catalogues that are used to
test our methodology. In §4 we will describe our new analysis
method for quantifying the anisotropic clustering as well as
proposing a way to deal with the RSD that are convolved
with the AP distortion. Here we will also present results of
our optimised estimator. We conclude in §5.

2 THE AP AND VOLUME EFFECT DUE TO

WRONGLY ASSUMED COSMOLOGICAL

PARAMETERS

The AP and volume effect due to wrongly assumed cosmo-
logical parameters are shown in the upper panel of Figure
1. Suppose that the true cosmology is a flat ΛCDM with
present density parameter Ωm = 0.26 and standard dark
energy equation of state (EoS) w = −1. If we were to dis-
tribute four perfect squares at various distances from 500
Mpc/h to 3,000 Mpc/h, and an observer were to measure
their redshifts and compute their positions and shapes us-
ing redshift-distance relations of two incorrect cosmologies:

(i) Ωm = 0.41, w = −1.3,
(ii) Ωm = 0.11, w = −0.7,

the shapes of the squares appear distorted (AP effect), and
their volumes are changed (volume effect). In the cosmolog-
ical model (ii) with Ωm = 0.11, w = −0.7, we see a stretch
of the shape in the LOS direction (hereafter “LOS shape
stretch”) and magnification of the volume (hereafter “vol-
ume magnification”), while in the model with Ωm = 0.41,
w = −1.3, we see opposite effects, with LOS shape compres-
sion and volume shrinkage.

The degree of LOS shape stretch and volume magnifi-
cation can be described by the following quantities

[∆r‖/∆r⊥]wrong

[∆r‖/∆r⊥]true
=

[DA(z)H(z)]true
[DA(z)H(z)]wrong

, (1)

Volumewrong

Volumetrue
=

[DA(z)2/H(z)]wrong

[DA(z)2/H(z)]true
, (2)

where ∆r‖, ∆r⊥ are the angular and radial sizes of the ob-
jects, and “true” and “wrong” denote the values of quanti-
ties in the true cosmology and wrongly assumed cosmology.
DA and H are the angular diameter distance and Hubble
parameter, respectively. In the particular case of a flat uni-
verse with constant dark energy EoS, they take the forms
of

H(z) = H0

√

Ωma−3 + (1− Ωm)a−3(1+w),

DA(z) =
1

1 + z
r(z) =

1
1 + z

∫ z

0

dz′

H(z′)
, (3)

where a = 1/(1 + z) is the cosmic scale factor, H0 is the
present value of Hubble parameter and r(z) is the comoving
distance.

In the lower panel of Figure 1, we plot the degree of
LOS shape stretch and volume magnification as functions
of redshift. In cosmology (i), both quantities have value
less than 1, indicating LOS shape compression and volume
shrink. The effect in cosmology (ii) is slightly more subtle.
At low redshift, the effect of dark energy is important, and
there is LOS shape compression and volume reduction due
to the quintessence like dark energy EoS. However, at higher
redshift the role of dark matter is more important, and we
see LOS shape stretch and volume magnification due to the
small Ωm.

More importantly, Figure 1 highlights the redshift de-
pendence of the AP and volume effects. For example, in the
cosmology with Ωm = 0.41, w = −1.3, both the LOS shape
stretch and volume magnification become more significant
with increasing redshift. In the cosmology with Ωm = 0.11,
w = −0.7, not only do the magnitudes of the effects evolve
with redshift, but there is also a turnover from LOS shape
compression and volume shrink at lower redshift to LOS
shape stretch and volume magnification at higher redshift.

3 DATA

We test the methodology using mock surveys constructed
from one of the Horizon Run simulations, HR3. HR3 are a
suite of large volume N-body simulations that have resolu-
tions and volumes capable of reproducing the observational
statistics of many current major redshift surveys like SDSS
BOSS etc (Park et al. 2005; Kim et al. 2009, 2011). HR3
adopts a flat-space ΛCDM cosmology with the WMAP 5
year parameters Ωm = 0.26, H0 = 72km/s/Mpc, ns = 0.96
and σ8 = 0.79 (Komatsu et al. 2011). The simulation was
made in a cube of volume (10.815 h−1Gpc)3 using 71203

particles with particle mass of 1.25 × 1011h−1M% .
The simulations were integrated from z = 27 and

reached z = 0 after making Nstep = 600 timesteps. Dark
matter halos were identified using the Friend-of-Friend algo-
rithm with the linking length of 0.2 times the mean particle

c© 2002 RAS, MNRAS 000, 1–8

We construct a likelihood function by requiring that the shape change 
as a function of redshift is minimized. Of course there is a redshift 
evolution of the clustering, however this is modeled to first-order 
using N-body simulations.



Conclusions - I
We wanted clean measurements of Da and H(z) as 

they are fundamental quantities that describe the 

geometry and evolution of the background universe.

- we have shown that the clustering ‘peak’ give us an 

unbiased constraint on these quantities

- the ‘clustering shells’ are also promising....

- And this technique will soon be applied to BOSS 

data
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Probing Scalar Field Theories

Light  scalar  fields  coupled  to  matter  (baryons)  are  predicted  by  
many  theories  of  HEP  beyond  the   standard  model.    

•
Coupled  means  we  have  a  fifth-force  in  nature.  If  it  exists,  is  

there  any  room  for  cosmological  signatures  (of  the  fifth-force)?  
•

A  fifth-force  is  strongly  constrained  from  local  gravity  experiments  
(inverse  square  law,  solar-­system  tests,  EP).    

•
Naive  conclusion:  Either  very  short  range  or  very  weakly  coupled,  

in  other  words:  no  cosmological  effects  of  the  fifth-force!  
•

Not  the  case  if  the  field  has  a  screening  mechanism.  The  fifth-
force  can  remain  ’hidden’  to  local  experiments!  

•
We consider two models that have  this  property:  Chameleon & 

Symmetron
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Probing Scalar Field Theories in 
redshift-space

Symmetron Model
Hinterbichler & Khoury (2010)

f(R) Gravity Model 
Hu & Sawicki (2007)

We focus our analysis in two 
specific scalar tensor models: the 
symmetron model and a 
particular case of  f(R) theories.

Both models include screening 
mechanisms, which reduce them 
to general relativity in high 
density regions and thus pass 
solar system tests.

N-body simulations from 
Llinares, Mota etal (2013) 
arXiv:1307.6748

Model �0 zS S B �
Symm A 1 1 1
Symm B 1 2 1
Symm C 1 1 2
Symm D 1 3 1

Model n | fR0| �0
fofr4 1 10�4 23.7
fofr5 1 10�5 7.5
fofr6 1 10�6 2.4

Table 1. Model parameters for the symmetron (left) and f (R) (right)
runs. The range in the f (R) model is derived from the value of fR0 and
given only to have a reference point to compare both families of models.
The range is given in Mpc/h in both set of models.

that this is a di↵erent implementation1 (though mathematically
equivalent) as is done in other codes that have implemented this
model (Oyaizu 2008; Li et al. 2012; Puchwein et al. 2013). As
noted in Oyaizu (2008), the scalar field equation of motion can
be written in a more numerically stable form by making a field
redefinition:

fR = �a�2eu. (36)

The equation of motion in its non-canonical form is then

r · (b(u)ru) = ⌦maH2
0(⇢̃ � 1)

�⌦ma4H2
0

 
1 + 4

⌦⇤

⌦m

!
(| fR0|a2)

1
n+1 e�

u
n+1

+⌦maH2
0

 
1 + 4a3⌦⇤

⌦m

!
(37)

where b(u) = eu. The discretization of this equation was imple-
mented as described in Sect. ??. The geodesic equation reads

d2
x

d⌧2 + r�̃ +
1
2

euru = 0. (38)

4. Analysis: redshift-space tests for modified

gravity

4.1. Simulations

The data to be used for the analysis was obtained from a set
of simulations that we run with both standard gravity and the
two models presented in Sect. 3. Table 1 summarises the
model parameters. The initial conditions were generated as-
suming that both scalar field models give fully screened solu-
tions at high redshift and thus, the Zeldovich approximation
is valid also in the modified models. In practice, we gener-
ated only one set of initial conditions with the package Cosmics
(Bertschinger 1995). We used a box size of 256 Mpc/h and 5123

particles. The background cosmology is also the same for all
the simulations and is defined as a flat ⇤CDM model given by
(⌦m,⌦⇤,H0) = (0.267, 0.733, 71.9 km/sec/Mpc).

4.2. Analysis

We proceed to measure the clustering statistics of the ISIS sim-
ulations discussed previously. Specifically we will estimated the
2-point correlation function (2PCF) in real and reshift-space and
in isotropic and in the anisotropic �, ⇡-decomposition. We will
also look at the behaviour of the 3-point correlation function in
both real and redshift-space for each of the simulation models.
1 By introducing the (Jordan-frame) potential �J = � � fR

2 (�̃J =

�̃ + 1
2 eu) one can transform the equations to that of Oyaizu (2008); Li

et al. (2012). Poisson’s equation for �J follows from simply adding
Poisson’s equation for �N and the Klein-Gordon equation for � fR/2.

We estimate the correlation function using the “Landy-
Szalay" estimator ?,

⇠(�, ⇡) =
DD � 2DR + RR

RR
, (39)

where DD is the number of galaxy–galaxy pairs, DR the num-
ber of galaxy-random pairs, and RR is the number of random–
random pairs, all separated by a distance � ± �� and ⇡ ± �⇡.
The pair counts are normalised since we use 20 times as many
randoms and data point to reduce shot noise contributions to the
correlation estimation.

In the isotropic case we measure ⇠(r) from r = 0! 60 in 20
linearly spaced bins. In the anisotropic case we measure ⇠(�, ⇡)
from �&⇡ = 0! 60 in 15 linearly spaced bins, resulting in 225
bins in the � � ⇡-plane.

We use the 3PCF estimator of ?,

⇣ =
DDD � 3DDR + 3DRR � RRR

RRR
, (40)

where each term represents the normalised triplet counts in the
data (D) and random (R) fields that satisfy a particular triangular
configuration.

There are a large number of triangular configurations that
could be investigated, however given the computer intensive na-
ture of 3PCF measurement, we limit our analysis to nine. This
choice will become important later when we come to analyse
⇠ 2000 mock catalogues using the same triangular configura-
tions, which requires significant computational resources. We
also choose configurations and bins that reduce the error and co-
variance on the derived Q values.

The 3PCF is a function of three variables that uniquely de-
fine a triangular configuration. The shape parameters can either
be the three sides of the triangle, (r1, r2, r3), or more commonly
(s, q, ✓) where,

s = r1, (41)

q =
r2

r1
, (42)

✓ = cos�1(r̂1.r̂2). (43)

In Eq 43 r̂1,2 is the unit vector of two sides of the triangle. The
3PCF is usually calculated in various configurations where s and
q are fixed while ✓ is varied from 0� to 180�.

Our measurements were made using the KSTAT code. This
code is MPI parallel and is based upon the structure known
as ‘kd-trees’ which is a way of organising a set of data in k-
dimensional space in such a way that once built, any query re-
questing a list of points in a neighbourhood can be answered
quickly without going through every single point.

4.3. Results

5. Conclusions and discussion

Several extensions of the standard cosmological model include
scalar fields as new degrees of freedom in the underlying grav-
itational theory which can be for instance in the form of scalar,
vector or tensor fields. In general, these new degrees of freedom
interact with matter and in particular with the standard model
fields. Since no deviations to Einstein gravity have been ob-
served nor measured up to nowadays in the solar system, these
interacting scalar field theories must include screening mecha-
nisms intended to hide the scalar field below observational lim-
its within the solar system. Such requirement can be relaxed on

Article number, page 4 of 5

Npart=512^3
Side=256Mpc/h
at z=0.0
Dark matter and FoF halos

with David Mota 
& Claudio Llinares (U. of Oslo)
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Probing Scalar Field Theories in 
redshift-space

Davis etal 2011

Percent level difference 
at relevant scales and 
redshifts

Isotropic Power 
Spectrum not very 
sensitive to information 
in the velocity field

Look in redshift-space 
using anisotropic 
statistics?

Davis etal 2011

Symmetron Power Spectrum
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Probing Scalar Field Theories in 
redshift-space

Davis etal 2011
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- Using iso-2PCF, more deviation from LCDM in redshift-space
- FOFR4 and SymmD models show largest difference > ~5%
- Maybe we can investigate velocity effect more specifically....
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Probing Scalar Field Theories in 
redshift-space

Davis etal 2011
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- In anisotropic proj again FOFR4 shows large variation in DM
- Halo clustering exhibits wider dispersion amongst models
- So what?  Can we construct a smoking gun test?  maybe...

Dark Matter Halos (FoF)
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Probing Scalar Field Theories in 
redshift-space

Davis etal 2011
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Remember that the observables of anisotropic clustering have 
different influences on the shape of the contours.

FOFR4 has an effect similar to G_theta

Since G_theta can be predicted from PLANCK + LCDM, we 
can hope to disentangle cosmo effects and look for deviations...

10% G_theta variation
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Probing Scalar Field Theories in 
redshift-space

Davis etal 2011

The 3pcf in various modified gravity simulations
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Fig. 3. upper left: The 3PCF for the 8 simulations using the triangular configuration of s=2Mpc/h, q=1, in real space. upper right: Same as right
hand panel, now in redshift-space. lower left: shows the deviation from the LCDM model in real space. lower right: The deviation from LCDM
in redshift-space.
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Fig. 4. same as Fig.3 with triangular configuration with s=2Mpc/h, q=2

Landy, S. D., & Szalay, A. S. 1993, ApJ, 412, 64
Szapudi, I., & Szalay, A. S. 1998, ApJ, 494, L41
Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2013, ApJ, 762, 109

Article number, page 4 of 5

Small scale clustering 
with s=2, q=1

there is significant 
dispersion between 
models which suggest 
that the 3PCF is a 
more powerful probe 
of modified 
gravitational clustering. 

The redshift space 
clustering tends to 
flatten the 3PCF, with 
FOFR4 displaying an 
extreme case of this.
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Probing Scalar Field Theories in 
redshift-space

Davis etal 2011

The 3pcf in various modified gravity simulations

Larger 3pt 
configuration with: 
s=3 q=2

Need an approximate 
error treatment to 
determine if deviations 
between models are 
larger than statistical 
fluctuations

Cristiano G. Sabiu et al.: Probing Scalar Field Theories in Redshift-Space

1 2 3 4 5 6
−600

−500

−400

−300

−200

−100

0

100

200

delta 3PCF r
1
=3, r

2
=3 − halos, real−space

r
3
 [Mpc/h]

∆
ζ 
{
r
1
=
3
,
r
2
=
3
,
r
3
}

 

 

1 2 3 4 5 6
−600

−500

−400

−300

−200

−100

0

100

200

delta 3PCF r
1
=3, r

2
=3 − halos, z−space

r
3
 [Mpc/h]

∆
ζ 
{
r
1
=
3
,
r
2
=
3
,
r
3
}

 

 

Fig. 5. same as Fig.3 with triangular configuration with s=3Mpc/h, q=1
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Fig. 6. same as Fig.3 with triangular configuration with s=3Mpc/h, q=2

Article number, page 5 of 5

Cristiano G. Sabiu et al.: Probing Scalar Field Theories in Redshift-Space

1 2 3 4 5 6
−600

−500

−400

−300

−200

−100

0

100

200

delta 3PCF r
1
=3, r

2
=3 − halos, real−space

r
3
 [Mpc/h]

∆
ζ 
{
r
1
=
3
,
r
2
=
3
,
r
3
}

 

 

1 2 3 4 5 6
−600

−500

−400

−300

−200

−100

0

100

200

delta 3PCF r
1
=3, r

2
=3 − halos, z−space

r
3
 [Mpc/h]

∆
ζ 
{
r
1
=
3
,
r
2
=
3
,
r
3
}

 

 

Fig. 5. same as Fig.3 with triangular configuration with s=3Mpc/h, q=1
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Fig. 6. same as Fig.3 with triangular configuration with s=3Mpc/h, q=2
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Probing Scalar Field Theories using 
sliced density field with Istvan Szapudi and 

Melody Wolk (U. of Hawaii)

2 Wolk et al.

Figure 1. The left panel shows the power spectra estimated using Equation 1 for the di↵erent models normalized by the ⇤CDM power

spectrum. The middle and right panels show respectively �± and P± normalized by the ⇤CDM power spectrum. The upper row are

measurements for the dark matter field while the lower row is for the haloes distribution (in that case we normalize by the haloes ⇤CDM

power spectrum).

This is expected to be accurate at small scales but wrong
at large scales as the information saturates at a finite
plateau instead of growing sharply with the cube of the
maximal resolved wavenumber (Rimes & Hamilton 2005,
2006; Neyrinck et al. 2006; Neyrinck & Szapudi 2007).

To quantify its Fisher information content, we need
an estimation of the A

⇤-covariance matrix as well. We also
choose to adopt a Gaussian description for the A

⇤ field:

CovA⇤
ij =

2
Nk

PA⇤(ki)PA⇤(kj)�ij . (10)

Neyrinck (2011) have shown this approximation is valid,
without noise, to a very good approximation for k . 0.4
hMpc�1, scale at which the covariance matrix of PA starts to
have non-negligible o↵ diagonal elements. Wolk et al. (2015)
have tested the accuracy of this approximation for projected
fields up to ⇠ 7 hMpc�1 and found very agreement.

The derivatives are calculated numerically by com-
paring the power spectra among simulations with di↵erent
modified gravity parameters to ⇤CDM.

We found a improvement of a few in the information
on the modified gravity parameters at di↵erent scales
compared to just using the power spectrum. However this
gain relies on the naive description for the covariance
matrices and thus the next step is to estimate the latter
precisely.
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ABSTRACT

Key words: methods: simulations,cosmology: large-scale-structure of the Universe

1 METHOD DESCRIPTION

1.1 Matter field

The power spectra are computed using the standard estima-
tor defined as:

P̂ (k) =
1

V Nk

X

k0

|�(k0)|2. (1)

V is the survey volume and the sum runs over theNk Fourier
modes associated to the k-th power spectrum bin. We mea-
sure the real-space power spectra of both the density, P , and
of the two new density fields , �+ and �� defined as:

� =
⇢� ⇢̄

⇢̄

(2)

�+ =

(
� if � > 0

0 if not
(3)

�� =

(
� if � < 0

0 if not
(4)

on a 2563 grid with the nearest-grid point density as-
signment correcting from the pixel window over the range
0.0025 . k . 2 hMpc�1. Our notations are P�+,�+ = P++,
P��,�� = P�� and P�+,�� = P+�. We define the new ob-
servable �± = P++ � P��. The measured power spectra
normalized by the ⇤CDM power spectrum are shown on
Figure 1 for the dark matter (upper row) and for haloes
(lower row).

1.2 A

⇤ field

In a previous work, Carron & Szapudi (2014) introduced
the local non-linear transformation A

⇤ as the optimal ob-
servable to extract the information content of galaxy count
maps. This recaptures in its spectrum the total available
cosmological information in presence of shot-noise.

?
E-mail: wolk@ifa.hawaii.edu

Assuming that the galaxy counts is a Poisson sam-
pling of an underlying lognormal galaxy field, let N =
(N1, · · · , Nn

cells

) be a map of galaxy counts. In the follow-
ing, ncells = 2562, for a two dimensional map. Given a sam-
pling rate N̄ , the mapping from N to A

⇤ is defined by the
non-linear equation (Carron & Szapudi 2014):

A

⇤ + N̄�

2
⇤e

A⇤
= �

2
⇤

✓
N � 1

2

◆
, (5)

where �

2
⇤ = ln(1 + �

2
�
g

), with �

2
�
g

the variance of the galaxy
field fluctuations at the cell scale.

As before, we construct the A

⇤
+ and the A

⇤
� fields

defined as:

A

⇤
+ =

(
A

⇤ if A⇤
> Ā

⇤

Ā

⇤ if not
(6)

A

⇤
� =

(
A

⇤ if A⇤
< Ā

⇤

Ā

⇤ if not
(7)

By analogy we define P

A⇤
, PA⇤

++, P
A⇤
�� and P

A⇤
+� and �A⇤

± =

P

A⇤
++�P

A⇤
��. The measured power spectra normalized by the

⇤CDM power spectrum are shown on Figure 2 for the dark
matter (upper row) and for haloes (lower row).

2 FISHER INFORMATION

Given a set of parameters ↵,�, ..., the Fisher matrix of the
matter power spectrum is defined as:

F↵� =
X

k
i

,k
j

<k
max

@P (ki)
@↵

Cov

�1
ij

@P (kj)
@�

(8)

As a first approximation we choose to adopt a Gaus-
sian description for the power spectrum covariance matrix:

Covij =
2
Nk

P (ki)P (kj)�ij . (9)
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Conclusions - II

We hunted for mod. grav. induced variations in the 

velocity field and the local environment density...

- Measured the redshift-space clustering statistics

- Find deviations from LCDM above exp. error

- redshift 2pcf shows deviations similar to Growth

- The cut-density field seems a promising tool for 

probing the environmental dependence

57



What we want....
Model independent measurements of 
Growth Rates and fundamental 
metric quantities like a, a^dot, H(z), 
Da - at various redshifts or cosmic 
times

We are are pushing to higher redshift 
and reducing errorbars and trying to 
remove model dependences from 
our analysis, but it’s not easy. 

2

FIG. 1: Fitting the supernova data by increasing z at fixed
d
L

: The lower, beige curve for Einstein de Sitter (EdS: flat,
⌦

m

= 1) is ruled out by the Union2.1 data. However, the
remapped EdS model with z = ↵

1

z
obs

+ ↵
2

z2
obs

(black solid
line) is almost indistinguishable from the concordance ⇤CDM
model (⌦

m

= 0.3, dashed line). An even simpler remapping
of z = z1.13

obs

, matches the concordance d
L

(z) but with H
0

=
55 kms�1Mpc�1. It is clear that from supernovae alone one
can neither prove our universe is accelerating nor rule out
redshift remapping.

0.0 0.5 1.0 1.5 2.0 2.5
Redshift z

50
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H
(z

)
[k

m
s�1

M
pc

�1
]

�CDM
EdS
rescaled EdS
Cosmic Chronometers
WiggleZ
BOSS

FIG. 2: H(z) for the standard ⇤CDM (bottom curve), stan-
dard EdS and the remapped EdS that fits the SNIa data in
Fig.(1), (top curve). To bring the EdS model into agreement
with the H(z) data would require z < z

obs

, the exact opposite
of what is required to match the d

L

(z) data The data shown
is without the changes described in the text and in section
(IA).

derdense region is the same as the cosmological redshift
picked up covering the same region.

We emphasise that there are other e↵ects that can yield
z 6= z

obs

. Consider bi-metric theories in which photons
couple to a metric, g̃

ab

, which is di↵erent than the metric,

g
ab

, to which matter couples; see e.g. [19]. Since radia-
tion is today sub-dominant we want to infer the proper-
ties of the matter metric since this will allow us to deduce
the dominant constituents and dynamics of the universe.
The frequency of light is determined by the null geodesic
equation kar̃

a

k0 = 0 where r̃
a

is the covariant deriva-
tive w.r.t g̃

ab

, which implies z 6= z
obs

if g̃
ab

6= g
ab

. Ex-
plicit examples of this are provided by Born-Infeld and
Euler-Heisenberg nonlinear electrodynamics, which can
be formulated as light propagating on a di↵erent e↵ective
metric, which modifies the standard redshift predictions
[24].

In the same vein, it has long been known that photon
propagation in 1-loop QED in a curved background is su-
perluminal at low-frequencies [14], with similar behaviour
in the Casimir vacuum, known as the ‘Scharnhorst’ ef-
fect [15]. Similarly electromagnetic radiation scatters o↵
spacetime curvature creating tails [18] that travel inside
the null cone, not just on it, even classically. These do
not threaten causality [16, 17] but they suggest that red-
shift remapping may be generic, though perhaps a small
e↵ect [36].

Another example is provided by the non-metric gener-
alisation of the Plebański formulation of General Rela-
tivity [20], which leads to redshifts which exhibit redshift
remapping depending on the ambient spatial curvature.

We are not, of course, pushing any of these models
or e↵ects as likely, rather they suggest that the relation
1 + z

obs

= a
0

/a
RW

should not be taken as God-given.
Rather the relation between z and z

obs

should either be
rigorously derived or tested experimentally. What ob-
servational limits, then, can one place on deviations of z
from z

obs

?
Observational Implications – Interpreting cosmological

observations becomes significantly more complex. We
now need to fit data at an observed redshift, z

obs

, to a
theory with unknown parameters at an unknown model
redshift, z. Unless the theory predicts z given z

obs

, we
must expect the parameter constraints to weaken since
one would have to marginalise over the unknown model
redshift z, or project out the radial information, gener-
alising what is currently done for photometric redshifts.
This is precisely what happens, as we discuss below.

Redshift remapping will in general depend on environ-
ment, such as in the non-metric theory [20] or non-linear
electromagnetism [24]. Here we ignore these complica-
tions to illustrate generic e↵ects implied by remapping
in which the model redshift, z, is only a function of z

obs

,
z = f(z

obs

). In particular, we study the model:

z = ↵
1

z
obs

+ ↵
2

z2
obs

. (2)

One result of remapping is that it changes the values
of derived data points based on the dynamics of mat-
ter. Consider Baryon Acoustic Oscillations (BAO); e.g.
[26]. The transverse BAO scale is relatively una↵ected by
remapping: it still gives the angular-diameter distance,
d
A

(z), but now at redshift z = f(z
obs

) instead of z
obs

.
The radial BAO scale is given by �z/H(z), but �z is

3

not observable, z
obs

is, and therefore the BAO scale be-
comes z0 �z

obs

/H(z) where z0 = dz/dz
obs

. This changes
the derived value of H(z), a novel feature in these the-
ories. In addition we must scale all BAO results by the
size of the sound horizon, r

s

⇠ (⌦
M

h2)�1/4. This change
is important, particularly for H(z); we show its impact
on current constraints in Figures (9) and (10).

The changes in any specific model of remapping may
be even more complicated. For example, in the non-
metric version of modified General Relativity [21], per-
turbations evolve with a time-dependent e↵ective speed
of sound that does not vanish even during matter domi-
nation. Hence redshift remapping in any theory must be
computed from first principles.

Nevertheless, we can make significant progress for the-
ories given by Eq. (2). Consider the luminosity distance,
d
L

(z). As long as H(z) is monotonic, which is true if
⇢ + p > 0, then d

L

(z) is a monotonically increasing func-
tion of z. This means that one can map the d

L

(z) of
any such FLRW cosmology into that of any other FLRW
cosmology, by suitable choice of Eq. (2). Instead of in-
creasing distances at fixed z by increasing ⌦

⇤

, one can
instead increase z at fixed z

obs

and d
L

. To match the
larger distances in an accelerating universe one requires
z > z

obs

.
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FIG. 3: The angular diameter distance, d
A

(z), for the same
three models in Fig.(1). Since d

A

= d
L

/(1+ z)2 and d
A

has a
peak, the remapped EdS model is an even worse fit to concor-
dance data than pure EdS, leading to an apparent violation of
distance duality, independent of any model assumptions. We
plot the BOSS Lyman-↵ data point at z = 2.3. We empha-
sise, however, that for many models leading to z-remapping,
the data themselves need to be consistently re-analysed.

Interestingly, Eq. (2) allows us to map the luminosity
distance of the flat, decelerating Einstein-de Sitter (EdS)
universe (⌦

m

= 1) almost exactly onto those of the con-
cordance ⇤CDM cosmology. Two examples are z = z1.13

obs

,
with H

0

' 55 km s�1Mpc�1 and z = 1.2 z
obs

+0.089 z2
obs

with H
0

= 72 km s�1Mpc�1. The latter gives the black
curve in Fig.(1) which is almost indistinguishable from

the concordance ⇤CDM (dashed curve).
In Fig.(6) we show the z = f(z

obs

) mapping required
to make the EdS d

L

(z) exactly equal to the ⇤CDM d
L

(z)
for all redshifts.

FIG. 4: Marginalised 1 & 2� contours for current d
L

(z),
H(z) and d

A

(z) data from Union2.1, WiggleZ, BOSS and cos-
mic chronometers for the model z = ↵

1

z
obs

+ ↵
2

z2
obs

. While
each dataset alone is consistent with ⌦

⇤

= 0, the combined
datasets confirm acceleration (⌦

⇤

= 0.68 ± 0.15), strongly
constrain redshift remapping (↵

1

= 0.97± 0.06) and are con-
sistent with no remapping (↵

1

,↵
2

) = (1, 0). Note the data
have been rescaled as per the discussion in the text, though
this does not change our main conclusions, see Fig.(9)

For d
L

(z) or H(z) data alone there is a perfect de-
generacy between ⌦

⇤

and remapping and hence a decel-
erating universe is perfectly consistent with the super-
nova data. In fact, for a remapping function of the form
z = ↵

1

z
obs

+ ↵
2

z2
obs

, the Union2.1 supernova data [22]
peaks at ⌦

⇤

' 0.15, as shown in Fig.(7).
Fortunately BAO and other methods, such as the cos-

mic chronometers [27], measure the Hubble rate, H(z),
which help significantly break the d

L

(z) degeneracy, as
follows. Imagine fitting supernova data with an EdS uni-
verse as in Fig.(1). At any z, d

L

(H) in the EdS model is
smaller (larger) than in the ⇤CDM model with the same
H

0

and ⌦
K

.
This is natural, the smaller H(z) caused by ⇤ is ex-

actly what gives the larger distances needed to fit the
supernovae. However, we fit the EdS model to super-
nova distances by a remapping with z > z

obs

. But the
EdS model fitting the supernova data has a significantly
larger H(z) than that of the concordance model, break-
ing the degeneracy between remapping and ⌦

⇤

. This
comes from two places: the EdS H(z) is larger at the
same z

obs

, and we have to compare the model to the
data at z > z

obs

, and since H(z) is increasing with z, the
di↵erence is even larger.
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perturbation theory. 

They analyze the broad-range shape of the monopole and quadrupole 
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redshift z~0.57



“While our measurements are generally consistent with the predictions 
of CDM and General Relativity, they mildly favor models in which the 
strength of gravitational interactions is weaker than what is predicted by 
General Relativity.”



�
n

= b
n

�
tot

If we assume that star formation rate per baryon ~ const. then:

The gas fraction 
in halos

The usual galaxy density:

The mean luminosity of galaxies may 
depend on environment, through 
merger rates that are corrected 

with the local matter density. This 
can lead to fluctuations in rho_L:

with: Avi Loeb and
Maayane Soumagnac
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bL;t - effective bias factor that measures the overall dependence 
of galaxy luminosity on the underlying difference  between the 
baryon and total density fluctuations.

Seeing the light:
The luminosity correlation func.

submitting to PRL
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Scale-Dependent Bias of Galaxies from Baryonic Acoustic
Oscillations

Rennan Barkana1 and Abraham Loeb2!
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2Astronomy Department, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA

9 September 2010

ABSTRACT

Baryonic acoustic oscillations (BAOs) modulate the density ratio of baryons to dark
matter across large regions of the Universe. We show that the associated variation
in the mass-to-light ratio of galaxies should generate an oscillatory, scale-dependent
bias of galaxies relative to the underlying distribution of dark matter. A measurement
of this effect would calibrate the dependence of the characteristic mass-to-light ratio
of galaxies on the baryon mass fraction in their large scale environment. This bias,
though, is unlikely to significantly affect measurements of BAO peak positions.

Key words: cosmology:theory – galaxies:formation – large-scale structure of Universe

1 INTRODUCTION

The rapid acoustic waves in the radiation-baryon fluid prior
to cosmological recombination were not followed by the dark
matter at that time. Following recombination, the baryons
were freed from the strong radiation pressure and fell into
the gravitational potential fluctuations of the dark matter.
As a result, the fractional difference between the density
fluctuations of baryons and dark matter decreased steadily
with cosmic time. But since the baryons amount to a sizable
fraction of the total mass density of matter (Ωb/Ωm ≈ 17%),
the gravitational effect of the baryons on the dark matter im-
printed baryonic acoustic oscillations (BAOs) on the matter
power spectrum. The characteristic comoving scale of BAOs
∼ 100 Mpc (corresponding to the sound horizon at recombi-
nation), provides a yardstick that can be used to measure the
dependence of both the angular diameter distance and Hub-
ble parameter on redshift (see review by Eisenstein 2005).

When analyzing galaxy surveys, it is often assumed
that galaxies are biased tracers of the underlying mat-
ter distribution (Kaiser 1984), with a bias factor that ap-
proaches a constant value on sufficiently large scales where
density fluctuations are still linear (e.g., Mo & White 1996;
Tegmark & Peebles 1998; Sheth et al. 2001). However, the
imprint of primordial acoustic waves on the baryon fluid
at recombination introduced a scale-dependent modulation
of the ratio between the density fluctuations of baryons
and dark matter that has not been completely erased by
the present time. A large-scale region with a higher baryon
mass fraction than average (in the perturbations that lead

! E-mail: barkana@wise.tau.ac.il (RB); aloeb@cfa.harvard.edu
(AL)

to galactic halos) is expected to produce more stars per unit
total mass and hence result in galaxies with a lower mass-
to-light ratio.

In this paper we characterize the associated scale-
dependent bias in flux-limited surveys of galaxies. The ratio
between the power spectra for fluctuations in the luminosity
density and number density of galaxies is expected to show
BAO oscillations that reflect the large-scale variations in the
baryon-to-matter ratio.

In §2, we formulate the oscillatory BAO signature on
galaxy bias in terms of a simple analytical model. The quan-
titative results from this model are presented in §3. Finally,
we summarize our main conclusions in §4.

2 THE MODEL

2.1 Basic Setup

Since galaxies sample the high peaks of the underlying mat-
ter density, they are biased tracers of the matter density.
When the clustering of galaxies is usually analyzed, the
bias is considered simply with respect to the matter density,
without separating out the effects of the baryons. As long
as the baryon fluctuations follow the same spatial pattern
as that of the dark matter, biasing with respect to each of
them cannot be separated since this separation is degenerate
with an overall change of the bias factor, which is not known
apriori. However, since the BAOs induce a scale-dependent
difference between the baryons and dark matter, it becomes
important to consider their influence on galaxies separately.

Consider the power spectrum of fluctuations in the
galaxy number density ngal and in the luminosity density

The galaxy correlation function:

The Idea
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and the luminosity correlation function:

and the additional factor: 

arxiv: 1009.1393

. . . + bCIP ⇠CIP

⇠
n

= b21⇠tot + 2b1b2⇠add + b22⇠CIP

⇠
L

= (b1 + b3)2⇠tot + 2(b1 + b3(b2 + b4)⇠add + . . .



Figure 6: Comparision of the model (left) and data (right). The Upper figures show ⇠

l

and ⇠

n

, with
error bars. The lower figures show the difference ⇠

l

� ⇠

n

. The theoretical predictions were computed
with values of the model parameters (b1 = 1.82, b2 = 0.22 and b3 = 26) which will have to be adjusted
to match the best-fit parameters.

7

Measurements
~200,000 CMASS galaxies from DR10

0.43<z<0.7

Luminosity

Number BAO

63

Large scale distribution of mass versus light from BAOs: search in the BOSS survey 7

Figure 8. Covariance matrix (left) and inverse covariance matrix (right) for the ⇠
n

measurement, measured by the BOSS collaboration (upper panel; published
DR11 covariance matrix), and by us (lower pannel)

Figure 7. Effect the b4 parameter on the model. We show the model for
⇠

l

� ⇠

n

. The other parameters are fixed at b1 = 2.193, b3 = 2.269,
b

sys

= �0.002, k⇤ = 1.638, A
MC

= 2.826, b
cip

= 0.006, which
are the median values of the marginalised distributions in the case of a joint
fit of ⇠

n

and ⇠

l

and a constraint on k

⇤ to be low. b4 takes ten linearly
spaced values from �2 to 8, the flatter ⇠

l

(r) functions (i.e. with lower val-
ues around r = 100) corresponding to the lower values of b4. As expected
from equation 26, b4 describes a discrepancy between ⇠

n

and ⇠

l

which is
scale-dependent, and appear at the BAO’s scales.

3.5.2 Covariance matrix for ⇠
n

and ⇠

L

We compute the covariance matrix for ⇠

n

and for ⇠

L

, using 100
Jackknife samples.Our covariance and inverse covariance matrix
are shown in figure 8, and compared to the covariance and inverse
covariance published by the BOSS collaboration (in the case of ⇠

n

).
From the comparison with the BOSS-DR10 covariance, it seems
like we are slightly over-estimating our covariance, which is not
surprising given that the JK is a rather crude method considering
the accuracy of the measurement. We show, in section 4.3, that this
our fit for ⇠

n

is in good agreement with a fit using the BOSS ⇠

n

and

covariance matrix, which indicates that this overestimation does not
affect the fit.

3.5.3 Joint covariance matrix for ⇠
n

and ⇠

L

Since the uncertainties of the measurements of ⇠

n

(r) and ⇠

L

(r)
at a given point are expected to be correlated, we need to com-
pute the full covariance matrix for the joint measurement of ⇠

n

(r)
and ⇠

L

(r). The full covariance matrix is shown in figure 9. It is
far from being diagonal, or even block-diagonal, which shows the
importance of fitting ⇠

n

and ⇠

L

jointly.

4 MODEL FITTING

This section focuses on the strategy we adopt to fit the model pre-
sented in section 2 to the measurement presented in section 3. We
present the model fitting basic formalism in section 4.1, and the al-
gorithm we used to perform Monte Carlo Markov Chains (MCMC)
in section 4.2. We show our results, first when fitting only ⇠

n

, in
sections 4.3, and then when fitting jointly ⇠

n

and ⇠

L

, in section 4.4.

4.1 Formalism

We adopt the terminology of Hogg et al. (2010), defining a gener-
ative model (a parametrized quantitative description of a statistical
procedure that could reasonably have generated the data) and an ob-
jective scalar to be optimized. We assume that the only reason that
our data point deviate from the model described by equations 25
and 26 is an offset in the ⇠ direction, drawn from a gaussian distri-
bution of zero mean and known variances �

⇠

. We wish to get the
set of parameters ✓ = {b1, b2, b3, b4, bsys, bCIP

, A

MC

, k⇤} which
maximizes the probability of our model M given the data D, i.e.

c� 2012 RAS, MNRAS 000, 1–14



Large scale distribution of mass versus light from BAOs: search in the BOSS survey 11

Figure 13. Marginalised distribution for each parameter, i band. The black dashed line shows the maximum likelihood value of each parameter.

the BAO peak. The idea is to partially reverse the effects of non-
linear growth of structure and large-scale peculiar velocities from
the data. Rather than modifying the model to account for the non-
linear effects, reconstruction acts on the data itself. It reduces the
anisotropy in the clustering, reverses the smoothing of the BAO fea-
ture due to second-order effects, and significantly reduces the ex-
pected bias in the BAO distance scale that arises from these same
second-order effects. In future work, reconstruction may allow a
better account for the non-linear effects and improve the goodness
of the fit and increase the evidence for a non-zero b4.

Since A

CIP

= b

CIP

/b

2
4, the case of b4 = 0 leads to an un-

constrained A

CIP

, and needs to be treated separately. We leave this
for further analysis.

5 MODEL SELECTION

Answering wether we detect a scale-dependent bias of the lumi-
nosity correlation function comes to answering the following ques-
tion: does the data support the inclusion of non-zero extra pa-
rameter b4? Rather than a question of parameter estimation (i.e.
the determination of the most probable values for the extra pa-
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Figure 13. Marginalised distribution for each parameter, i band. The black dashed line shows the maximum likelihood value of each parameter.
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the determination of the most probable values for the extra pa-
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Conclusions - III

- Measured the luminosity and position 2pcf’s

- Confirmed the theoretical prediction of Barkana & 

Loeb

- The measurement of b_L is a new quantity in galaxy 

formation, a combination of the way in which the 

luminosity of a galaxy depends on the baryonic 

content of the host halo.

- Hint of Compensated Isocurvature Perturbations 

(preliminary!!)
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