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Why heterotic string theory?

Why the heterotic string?

Some reasons to study heterotic string theory:
o String theory: consistent theory of quantum gravity!

@ Comes equipped with an EgxEg (or SO(32)) gauge group
= good framework for grand unified models.

@ Many candidate Standard Model compactifications known.

o Calabi—Yau compactification gives N =1 SUSY ind = 4
— suitable for MSSM-style models.

@ Appealing mathematical framework, reasonably well-studied.
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Mathematical background
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Mathematical background Homology

Homology

For a (compact) manifold M:
o A p-cycle is a p-dimensional submanifold with no boundary,

8Cp:O.

@ A p-boundary is the boundary of a (p + 1)-dimensional
submanifold,
bp = 0dp41 -
@ NOTE: A boundary has no boundary = a p-boundary is a p-cycle.
The pth homology group is defined as

_ {p-cycles on M}
Ho(M) = {p-boundaries on M}

It classifies the p-cycles that are not boundaries.
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Mathematical background Homology

Homology example: torus 72

@ aand & belong to the same
homology class
(since a — & is the boundary
of the shaded region).

@ aand b belong to different
homology classes. They b
cannot be deformed into each
other.

o Each 1-cycle can wrap the torus an integer number of times.

o The first homology group, H(T?) = Z & Z.
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Mathematical background Differential forms and cohomology

Differential forms

@ Recall that {dx*} form a basis of covariant vectors.
o The wedge product is the antisymmetric tensor product, e.g.

dx'" Adx? = dx' @ dx? — dx? @ dx' .

o A p-form is a totally antisymmetric, covariant tensor of rank p:

1

wp = Ewm---updxm AL ANdxPe

o The exterior derivative is defined as

1
dwp = o (Opwpsg..ipdXP) A AXHT A LA dXHP
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Mathematical background Differential forms and cohomology

Differential forms: example (electromagnetism)
o Define gauge potential 1-form, field strength 2-form,
A=Adx", F= %Fuydx“ AdxY .
@ The usual relation,
F. =08,A, —0,A,,

can be written as
F=dA.

o Similarly, two of Maxwell’s equations in tensor form,
apFuv+auFVp+aVFpu =0,

are now simply
dF =0.
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Mathematical background Differential forms and cohomology

Cohomology

o A p-form wp is closed if

o A p-form 3, is exact if there is a (p — 1)-form ap_1 such that
5[) = dOép_1 .

Electromagnetism example:
o dF =0 = Fis closed;
o F=dA = Fis also exact.
On any (compact) manifold M, the pth cohomology group is

_ {closed p-forms on M}
~ {exact p-forms on M}

HP (M)

It classifies the closed p-forms that are not exact.
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Mathematical background Differential forms and cohomology

de Rham’s theorem

o Homology and cohomology groups are dual to each other,
Hp(M) = HP(M) .
o Explicitly this means that
cycles that are not boundaries < closed forms that are not exact.
o Or, heuristically,

non-trivial topology < non-trivial tensor structure.
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Moduli stabilisation Moduli stabilisation overview

Calabi—Yau compactification

o Superstring theory is self-consistent
only in 10 spacetime dimensions.

o Assume the extra 6 spatial
dimensions are compactified.

o Lots of supersymmetry in d = 10
— want to break most of it.

@ Amount of broken SUSY =- holonomy
group of compactification manifold.

o/

o Holonomy group: set of all possible rotations of a vector after
transport around a closed curve on the manifold.

@ Maximum holonomy is SO(6) = SU(4) = no SUSY preserved.
o Calabi—Yau manifold: SU(3) holonomy = 1/4 SUSY preserved.

[m} = =
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Moduli stabilisation Moduli stabilisation overview

What are moduli?

Compactification gives rise to scalar fields called moduli.
Three types of moduli:

o The (axio-)dilaton S

— sets the string coupling, always present in string theory;
o Kahler moduli 7"

— parametrise closed 2-forms = size of 2-cycles in the geometry;
o Complex structure moduli Z2

— closed 3-forms = 3-cycles, “shape” of compactification.

Moduli are flat directions in the potential — this is catastrophic!
Moduli need masses to prevent decompactification, 5th forces, etc.
— problem of moduli stabilisation.
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Moduli stabilisation Moduli stabilisation overview

Moduli stabilisation: Type IIB example

Example: moduli stabilisation in type 1B string theory.

Theory contains R-R 3-form flux F3 and NS-NS 3-form flux Hj.

R, NS: periodicity conditions on string excitations.

Compactify such that on the manifold, F3 and H; are non-zero

— flux compactification.

@ In the right combination, dilaton and all complex structure moduli
can be stabilised (note: 3-forms stabilise 3-cycles).

o Kahler moduli remain unstabilised, can fix with eg.

- non-perturbative effects (KKLT),
- non-perturbative effects and perturbative o’ corrections (LVS).

o All moduli stabilised!

© 06 0 o
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Moduli stabilisation Moduli stabilisation overview

Problems with heterotic moduli stabilisation

@ In heterotic string theory, only have NS-NS flux Hs.
@ Can stabilise complex structure moduli... what then?
o Dilaton can be stabilised by gaugino condensation.

@ No other non-perturbative effects, no other options for flux
quantisation.

@ In fact, problem is even worse:

Strominger, 1986

If a heterotic compactification on a manifold Y has a maximally
symmetric (i.e. Poincaré) vacuum and non-vanishing Hz, Y is
non-Calabi—Yau.

o Hence for a Calabi—Yau compactification, Hz = 0!
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Moduli stabilisation Mirror symmetry

Mirror symmetry

o A related issue is mirror symmetry.
o For every Calabi—Yau manifold Y, there is a mirror Calabi—Yau Y.

o Mirror symmetry exchanges Kéhler moduli T/ and complex
structure moduli Z2.

=} = = E E DA
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Moduli stabilisation

Mirror symmetry

Mirror symmetry and flux compactifications

o Type IIA compactified on Y « type IIB compactified on Y.
o Flux compactifications: R-R flux F3 <+ Fq, Fo, Fa, Fe.

o Problem: no obvious mirror dual for NS-NS flux Hs!
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Moduli stabilisation Non-CY manifolds

What is an SU(3) structure manifold?

o Mirror dual: manifold with SU(3) structure, but not Calabi-Yau
hep-th/0008142 (Vafa), hep-th/0211102 (Gurrieri, Louis, Micu,
Waldram).

o SU(3) structure: there is a globally-defined spinor n that leaves 1/4
of the SUSY unbroken.

o Calabi—Yau case: 7 is covariantly constant with respect to the
Levi-Civita connection V.

o Non-CY case: Vi ~ T% (note: I matrices/tensor indices
suppressed).

o T9Y s the intrinsic torsion of the manifold.
o Torsion on 2-cycles can stabilise Kahler moduli T'.
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Moduli stabilisation Non-CY manifolds

A choice

There are two options:

Study the moduli space of Poincaré-invariant compactifications on

Option 1:
SU(3)-structure manifolds.

o Has been studied in eg. hep-th/0408121 (Gurrieri, Lukas, Micu),
hep-th/0507173 (de Carlos, Gurrieri, Lukas, Micu).

o Torsion quantisation understood from mirror symmetry on
so-called half-flat manifolds.

o Can stabilise all moduli, but difficult to tune for consistent
solutions/GUT gauge couplings. Many axions remain unstabilised.

Heterotic Calabi—Yau flux compactifications, but break maximal

Option 2:
symmetry (Poincaré invariance) of d = 4 spacetime.
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Non-maximally-sy tric
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@ Non-maximally-symmetric spacetime
o Domain wall vacuum
o Extension: cosmic strings and black holes
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Non-maximally-sy tric sp i D in wall vacuum

Domain wall vacuum

o Assume heterotic Calabi—Yau compactification with H-flux.
o Maximal symmetry in d = 3 + 1 broken!

o There exist 1/2-BPS domain wall solutions
1305.0594 (Klaput, Lukas, Svanes).

o 1/2-BPS: 2 of the 4 SUSY generators in d = 4, V' = 1 unbroken.

@ d = (2+ 1) Poincaré symmetry preserved; DW breaks symmetry
in transverse y direction.

o Moduli satisfy flow equations in the y coordinate.
BUT...that’s not realistic!
@ However, Kahler moduli have not yet been stabilized explicitly.

@ Doing so may “uplift” to a Minkowski vacuum (shown to happen in
certain half-flat cases).
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Non-maximall

y-sy tric sp i Extension: cosmic strings and black holes

Extension

An idea I'm currently working on, in collaboration with Eirik Svanes
(LPTHE, Paris) and Cyril Matti (City University, London):

o The 1/2-BPS domain wall breaks Poincaré invariance along one
coordinate.

@ Mathematically, the SU(3) structure is fibred over an “interval”.
o Example of an interval: the real line R.
Proposition:

Fibre the SU(3) structure over an interval that is not a Cartesian
coordinate direction.

Examples:

@ Cylindrical (p, ¢, 2), fibre along p = cosmic string;
@ Spherical (r, 0, ¢), fibre along r = black hole.
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Non-maximally-sy tric sp i Extension: cosmic strings and black holes

Cosmic strings

@ Cylindrical polar coordinates (p, ¢, z): fibre along p
= cosmic string.

@ Appears to also be 1/2-BPS.

o Flow equations for moduli have the same structure as in the
domain wall case.

Issues:

o That’s still not realistic = again may need to uplift to Minkowski.
o Deeper structure: relation to intersecting domain walls?

o Possible 1/4-BPS solutions?

@ Work in progress!

Stephen Angus () Heterotic string phenomenology 2015/02/12 24 /26



Non-maximally-sy tric

Black holes

p i Extension: cosmic strings and black holes

o Spherical polar coordinates (r, 6, ¢): fibre along r
= “black hole” solution.

@ Note: this is a toy model — just a naked singularity at the origin.

o Flow equations have analogous structure to the other 2 cases.

@ Major advantage: do not necessarily need to uplift to Minkowski!
However

o Toy model does not yet account for curvature, etc.

o Not yet matched to the full 10d heterotic solution.

o Related to triple-intersecting domain walls? 1/8-BPS not possible
as only 4 supercharges. .. consistency?
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Summary

Summary

o String compactifications generate moduli, which must be
stabilised. This can be done using fluxes that wrap the cycles in
the geometry.

o For the heterotic string, only Hz present. One solution is to
compactify on SU(3) structure manifolds which are not
Calabi-Yau.

@ An alternative is to sacrifice Poincaré invariance
— domain wall solutions have been considered.

@ We are currently working on extending this to cosmic strings and
black holes.
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