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Why heterotic string theory?

Why the heterotic string?

Some reasons to study heterotic string theory:
String theory: consistent theory of quantum gravity!
Comes equipped with an E8×E8 (or SO(32)) gauge group
⇒ good framework for grand unified models.
Many candidate Standard Model compactifications known.
Calabi–Yau compactification gives N = 1 SUSY in d = 4
→ suitable for MSSM-style models.
Appealing mathematical framework, reasonably well-studied.
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Mathematical background
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Mathematical background Homology

Homology

For a (compact) manifold M:
A p-cycle is a p-dimensional submanifold with no boundary,

∂cp = 0 .

A p-boundary is the boundary of a (p + 1)-dimensional
submanifold,

bp = ∂dp+1 .

NOTE: A boundary has no boundary⇒ a p-boundary is a p-cycle.
The pth homology group is defined as

Hp(M) =
{p-cycles on M}

{p-boundaries on M}
.

It classifies the p-cycles that are not boundaries.
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Mathematical background Homology

Homology example: torus T 2

a and a′ belong to the same
homology class
(since a− a′ is the boundary
of the shaded region).
a and b belong to different
homology classes. They
cannot be deformed into each
other.

a a'

b

Each 1-cycle can wrap the torus an integer number of times.
The first homology group, H1(T 2) = Z⊕ Z.
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Mathematical background Differential forms and cohomology

Differential forms

Recall that {dxµ} form a basis of covariant vectors.
The wedge product is the antisymmetric tensor product, e.g.

dx1 ∧ dx2 = dx1 ⊗ dx2 − dx2 ⊗ dx1 .

A p-form is a totally antisymmetric, covariant tensor of rank p:

ωp =
1
p!
ωµ1...µp dxµ1 ∧ . . . ∧ dxµp .

The exterior derivative is defined as

dωp =
1
p!

(
∂ρωµ1...µp dxρ

)
∧ dxµ1 ∧ . . . ∧ dxµp .
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Mathematical background Differential forms and cohomology

Differential forms: example (electromagnetism)

Define gauge potential 1-form, field strength 2-form,

A = Aνdxν , F =
1
2

Fµνdxµ ∧ dxν .

The usual relation,

Fµν = ∂µAν − ∂νAµ ,

can be written as
F = dA .

Similarly, two of Maxwell’s equations in tensor form,

∂ρFµν + ∂µFνρ + ∂νFρµ = 0 ,

are now simply
dF = 0 .
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Mathematical background Differential forms and cohomology

Cohomology

A p-form ωp is closed if
dωp = 0 .

A p-form βp is exact if there is a (p − 1)-form αp−1 such that

βp = dαp−1 .

Electromagnetism example:
dF = 0⇒ F is closed;
F = dA⇒ F is also exact.

On any (compact) manifold M, the pth cohomology group is

Hp(M) =
{closed p-forms on M}
{exact p-forms on M}

.

It classifies the closed p-forms that are not exact.
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Mathematical background Differential forms and cohomology

de Rham’s theorem

Homology and cohomology groups are dual to each other,

Hp(M) ∼= Hp(M) .

Explicitly this means that

cycles that are not boundaries⇔ closed forms that are not exact.

Or, heuristically,

non-trivial topology⇔ non-trivial tensor structure.
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Moduli stabilisation Moduli stabilisation overview

Calabi–Yau compactification

Superstring theory is self-consistent
only in 10 spacetime dimensions.
Assume the extra 6 spatial
dimensions are compactified.
Lots of supersymmetry in d = 10
→ want to break most of it.
Amount of broken SUSY⇒ holonomy
group of compactification manifold.

Holonomy group: set of all possible rotations of a vector after
transport around a closed curve on the manifold.
Maximum holonomy is SO(6) ∼= SU(4)⇒ no SUSY preserved.
Calabi–Yau manifold: SU(3) holonomy⇒ 1/4 SUSY preserved.
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Moduli stabilisation Moduli stabilisation overview

What are moduli?

Compactification gives rise to scalar fields called moduli.
Three types of moduli:

The (axio-)dilaton S
→ sets the string coupling, always present in string theory;
Kähler moduli T i

→ parametrise closed 2-forms⇒ size of 2-cycles in the geometry;
Complex structure moduli Z a

→ closed 3-forms⇒ 3-cycles, “shape” of compactification.
Moduli are flat directions in the potential — this is catastrophic!
Moduli need masses to prevent decompactification, 5th forces, etc.
→ problem of moduli stabilisation.
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Moduli stabilisation Moduli stabilisation overview

Moduli stabilisation: Type IIB example

Example: moduli stabilisation in type IIB string theory.
Theory contains R-R 3-form flux F3 and NS-NS 3-form flux H3.
R, NS: periodicity conditions on string excitations.
Compactify such that on the manifold, F3 and H3 are non-zero
→ flux compactification.
In the right combination, dilaton and all complex structure moduli
can be stabilised (note: 3-forms stabilise 3-cycles).
Kähler moduli remain unstabilised, can fix with eg.

- non-perturbative effects (KKLT),
- non-perturbative effects and perturbative α′ corrections (LVS).

All moduli stabilised!
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Moduli stabilisation Moduli stabilisation overview

Problems with heterotic moduli stabilisation

In heterotic string theory, only have NS-NS flux H3.
Can stabilise complex structure moduli... what then?
Dilaton can be stabilised by gaugino condensation.
No other non-perturbative effects, no other options for flux
quantisation.
In fact, problem is even worse:

Strominger, 1986
If a heterotic compactification on a manifold Y has a maximally
symmetric (i.e. Poincaré) vacuum and non-vanishing H3, Y is
non-Calabi–Yau.

Hence for a Calabi–Yau compactification, H3 = 0!

Stephen Angus () Heterotic string phenomenology 2015/02/12 16 / 26



Moduli stabilisation Mirror symmetry

Mirror symmetry

A related issue is mirror symmetry.
For every Calabi–Yau manifold Y , there is a mirror Calabi–Yau Ỹ .
Mirror symmetry exchanges Kähler moduli T i and complex
structure moduli Z a.
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Moduli stabilisation Mirror symmetry

Mirror symmetry and flux compactifications

Type IIA compactified on Y ↔ type IIB compactified on Ỹ .
Flux compactifications: R-R flux F3 ↔ F0, F2, F4, F6.
Problem: no obvious mirror dual for NS-NS flux H3!
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Moduli stabilisation Non-CY manifolds

What is an SU(3) structure manifold?

Mirror dual: manifold with SU(3) structure, but not Calabi-Yau
hep-th/0008142 (Vafa), hep-th/0211102 (Gurrieri, Louis, Micu,
Waldram).
SU(3) structure: there is a globally-defined spinor η that leaves 1/4
of the SUSY unbroken.
Calabi–Yau case: η is covariantly constant with respect to the
Levi-Civita connection ∇.
Non-CY case: ∇η ∼ T 0η (note: Γ matrices/tensor indices
suppressed).
T 0 is the intrinsic torsion of the manifold.
Torsion on 2-cycles can stabilise Kähler moduli T i .
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Moduli stabilisation Non-CY manifolds

A choice

There are two options:

Option 1:
Study the moduli space of Poincaré-invariant compactifications on

SU(3)-structure manifolds.

Has been studied in eg. hep-th/0408121 (Gurrieri, Lukas, Micu),
hep-th/0507173 (de Carlos, Gurrieri, Lukas, Micu).
Torsion quantisation understood from mirror symmetry on
so-called half-flat manifolds.
Can stabilise all moduli, but difficult to tune for consistent
solutions/GUT gauge couplings. Many axions remain unstabilised.

Option 2:
Heterotic Calabi–Yau flux compactifications, but break maximal

symmetry (Poincaré invariance) of d = 4 spacetime.
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Non-maximally-symmetric spacetime Domain wall vacuum

Domain wall vacuum

Assume heterotic Calabi–Yau compactification with H-flux.
Maximal symmetry in d = 3 + 1 broken!
There exist 1/2-BPS domain wall solutions
1305.0594 (Klaput, Lukas, Svanes).
1/2-BPS: 2 of the 4 SUSY generators in d = 4,N = 1 unbroken.
d = (2 + 1) Poincaré symmetry preserved; DW breaks symmetry
in transverse y direction.
Moduli satisfy flow equations in the y coordinate.

BUT. . . that’s not realistic!
However, Kähler moduli have not yet been stabilized explicitly.
Doing so may “uplift” to a Minkowski vacuum (shown to happen in
certain half-flat cases).

Stephen Angus () Heterotic string phenomenology 2015/02/12 22 / 26



Non-maximally-symmetric spacetime Extension: cosmic strings and black holes

Extension

An idea I’m currently working on, in collaboration with Eirik Svanes
(LPTHE, Paris) and Cyril Matti (City University, London):

The 1/2-BPS domain wall breaks Poincaré invariance along one
coordinate.
Mathematically, the SU(3) structure is fibred over an “interval”.
Example of an interval: the real line R.

Proposition:
Fibre the SU(3) structure over an interval that is not a Cartesian

coordinate direction.

Examples:
Cylindrical (ρ, φ, z), fibre along ρ⇒ cosmic string;
Spherical (r , θ, φ), fibre along r ⇒ black hole.
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Non-maximally-symmetric spacetime Extension: cosmic strings and black holes

Cosmic strings

Cylindrical polar coordinates (ρ, φ, z): fibre along ρ
⇒ cosmic string.
Appears to also be 1/2-BPS.
Flow equations for moduli have the same structure as in the
domain wall case.

Issues:
That’s still not realistic⇒ again may need to uplift to Minkowski.
Deeper structure: relation to intersecting domain walls?
Possible 1/4-BPS solutions?
Work in progress!
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Non-maximally-symmetric spacetime Extension: cosmic strings and black holes

Black holes

Spherical polar coordinates (r , θ, φ): fibre along r
⇒ “black hole” solution.
Note: this is a toy model — just a naked singularity at the origin.
Flow equations have analogous structure to the other 2 cases.
Major advantage: do not necessarily need to uplift to Minkowski!

However
Toy model does not yet account for curvature, etc.
Not yet matched to the full 10d heterotic solution.
Related to triple-intersecting domain walls? 1/8-BPS not possible
as only 4 supercharges. . . consistency?
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Summary

Summary

String compactifications generate moduli, which must be
stabilised. This can be done using fluxes that wrap the cycles in
the geometry.
For the heterotic string, only H3 present. One solution is to
compactify on SU(3) structure manifolds which are not
Calabi–Yau.
An alternative is to sacrifice Poincaré invariance
→ domain wall solutions have been considered.
We are currently working on extending this to cosmic strings and
black holes.
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