
easily enhanced; the model, unlike the standard case, also allows for a blue spectrum (see
[44] for another very recent proposal).

To ascertain whether this gw production may result in a greater observable r, the
ratio (1.3) should be computed in explicit realizations of this model. The first step in this
computation is to find a possible covariant formulation for the model in [43]. To describe
the dynamics of the spectator field σ, we employ a Lagrangian of the type P (X,σ) , where
X ≡ − (∂σ)2; a sound speed smaller than unity is easily implemented in these models. Indeed,
a large class of top-down realizations of inflationary mechanisms allows for fields whose speeds
of sound are smaller than unity, often times the inflaton field itself [51] (see also [52] for more
phenomenologically oriented models). From a high energy theory standpoint, the presence
of several light fields at energies of order Einfl or higher is also plausible and we note here
that, depending on the coupling (see e.g. [53, 54]), integrating out of these fields can lead to
a modified speed of propagation for the remaining field(s).

For the theory at hand, we also assume a non-minimal derivative coupling of σ to
gravity 4. The spectator sector is minimally coupled to an inflaton field φ that has a standard
Lagrangian, and hence a unitary sound speed. We compute the contributions to scalar and
tensor power spectra due to second order contributions sourced by σ.

We find that in our setup r is not enhanced compared to the standard generation
mechanism but that it is highly dependent on the value of the speed of sound cs for a large
region of the parameters space. The direct r ↔ H relation is therefore broken.

This paper is organized as follows: in Sec. 2 we discuss our model, study the back-
ground evolution and the perturbations for the spectator field; in Sec. 3 and 4 we present
the main steps of the calculation of the second order contributions from δσ to the tensor and
scalar power spectra; in Sec. 5 we summarize our results and we comment on our findings;
in Sec. 6 we offer our conclusions. More details about the full linear perturbation analysis
and about the computation of the non-linear equation for the scalar fluctuations are pro-
vided respectively in Appendices A and B. Details about tadpole diagrams are presented in
Appendix C.

2 A covariant description of a field with cs < 1

In our set-up inflation is driven by a scalar field φ minimally coupled to gravity and to
a spectator field σ. The latter has a sound speed cs < 1. The Lagrangian for σ is also
characterized by a non-minimal derivative coupling to gravity 5. The total action reads

S =

∫

d4x
√
−g

{

M2
P

2
R−

1

2
gµν∂µφ∂νφ− V (φ) + Lσ

}

, (2.1)

(the signature of the metric is −+++) where

Lσ ≡ Λ4

(

−
gµν∂µσ∂νσ

M4

)n

−
Λ2

M4
Gµν∂µσ∂νσ. (2.2)

Gµν is the Einstein tensor, Λ and M are constant energy scales and n > 1. The field σ has
no potential. As shown explicitly later in the linear perturbation analysis, one can verify

4Later in the text, we will elaborate on the reasons behind this choice.
5Inflationary Lagrangians with non-minimal derivative couplings to gravity for the scalar fields were pro-

posed by several authors [55]. In our model, it is only the spectator field that enjoys a non-minimal coupling
to gravity.
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