
3 Production of gravity waves

In the spatially flat gauge, δgij |scalar = 0, the metric has the form gij = a2 (δij + hij), where
hij (transverse and traceless) incorporates the tensor degrees of freedom. The canonically
normalized tensor modes are 6
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and in momentum space they obey the equation
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ĥλ(τ, k⃗) = Jλ(τ, k⃗). (3.2)

To leading order in slow-roll one finds
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The derivation of the source term (3.3) is straightforward if one expands the Lagrangian to
third order and identifies the interactions of the type ∼ O(hδσδσ). Using (2.12) and the
Green’s function (2.13), one obtains (see also [43]) for the sourced tensor power spectrum
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Using new variables
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and the expression for the spectator field mode-functions, Eq. (2.8), one has
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where B is the normalization of the spectator field mode function, Eq. (2.8), and
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The (x, y) integral can be performed numerically, leading to the final result
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where we also used the relation between the sound speed and the slow-roll parameter that is
specific of our model, c2s = ϵ/3(n − 1) (see Appendix A).

6The circular polarization vectors satisfy k⃗ · ϵ⃗ (±)(k⃗) = 0, k⃗× ϵ⃗ (±)(k⃗) = ∓ikϵ⃗ (±)(k⃗), ϵ⃗ (±)(−k⃗) = ϵ⃗ (±)(k⃗)∗,

and are normalized according to ϵ⃗ (λ)(k⃗)∗ · ϵ⃗ (λ′)(k⃗) = δλλ′ .
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